A215854 Number of simple labeled graphs on n nodes with exactly 4 connected components that are trees or cycles.
1, 10, 125, 1610, 23597, 394506, 7533445, 163190665, 3971678359, 107502644249, 3205669601953, 104435680520535, 3690517248021753, 140590728463023632, 5743180320999041664, 250423270549658253350, 11608409727652016747176, 570034426072900362961212
Offset: 4
Keywords
Examples
a(4) = 1: the graph with 4 1-node trees. a(5) = 10: each graph has one 2-node tree and 3 1-node trees, and C(5,2) = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..145
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) end: a:= n-> T(n, 4): seq(a(n), n=4..25);