A215915 E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.
1, 1, 3, 13, 79, 579, 5209, 53347, 628257, 8223481, 119473291, 1893056781, 32677209103, 606930554923, 12109058077809, 257638964244739, 5830359141736129, 139638723615395697, 3531794326401241747, 93977250969358226701, 2625647922067519041231, 76809884197769914248211
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! + ... such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..432
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
-
Maxima
a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */
-
PARI
{a(n)=n!*polcoeff(exp(sum(m=1,n+1,numbpart(m)*x^m/m+x*O(x^n))),n)} for(n=0,31,print1(a(n),", "))
Formula
a(n) = (n-1)!*sum(p(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1), a(0)=1, where p(i) is the number of partitions of n. - Vladimir Kruchinin, Feb 27 2015
Comments