A215916 The total number of components (cycles) in all alignments.
0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..417
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 180.
Programs
-
Mathematica
nn = 20; a = Log[1/(1 - x)];Range[0, nn]! CoefficientList[ D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
-
PARI
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022
Formula
a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022
Comments