cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215916 The total number of components (cycles) in all alignments.

Original entry on oeis.org

0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
Offset: 0

Views

Author

Geoffrey Critzer, Aug 27 2012

Keywords

Comments

An alignment is a sequence of cycles of an n-permutation, cf. A007840.

Crossrefs

Programs

  • Mathematica
    nn = 20; a = Log[1/(1 - x)];Range[0, nn]! CoefficientList[
      D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022

Formula

a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022