A215972 Numbers k such that Sum_{j=1..k-1} j!/2^j is an integer.
1, 3, 6, 13, 15, 26, 30, 55, 61, 63, 3446, 108996, 3625183, 13951973, 28010902, 7165572248, 14335792540, 114636743487, 229264368710, 458534096495
Offset: 1
Examples
a(1)=1 is in the sequence because sum(..., 0<k<1)=0 (empty sum) is an integer. 2 is not in the sequence because 1!/2^1 = 1/2 is not an integer. a(2)=3 is in the sequence because 1!/2^1 + 2!/2^2 = 1 is an integer.
Links
- B. M. M. de Weger, Sums with factorials, NMBRTHRY list, Aug 28 2012
Programs
-
Mathematica
sum = 0; Select[Range[0, 10^4], IntegerQ[sum += #!/2^#] &] + 1 (* Robert Price, Apr 04 2019 *)
-
PARI
is_A215972(n)=denominator(sum(k=1,n-1,k!/2^k))==1
-
PARI
s=0;for(k=1,9e9,denominator(s+=k!/2^k)==1&print1(k+1,","))
Formula
Extensions
Terms through a(20) from Aart Blokhuis and Benne de Weger, Aug 30 2012, who thank Jan Willem Knopper for efficient programming. - N. J. A. Sloane, Aug 30 2012
Comments