cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A215972 Numbers k such that Sum_{j=1..k-1} j!/2^j is an integer.

Original entry on oeis.org

1, 3, 6, 13, 15, 26, 30, 55, 61, 63, 3446, 108996, 3625183, 13951973, 28010902, 7165572248, 14335792540, 114636743487, 229264368710, 458534096495
Offset: 1

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Examples

			a(1)=1 is in the sequence because sum(..., 0<k<1)=0 (empty sum) is an integer.
2 is not in the sequence because 1!/2^1 = 1/2 is not an integer.
a(2)=3 is in the sequence because 1!/2^1 + 2!/2^2 = 1 is an integer.
		

Crossrefs

Programs

  • Mathematica
    sum = 0; Select[Range[0, 10^4], IntegerQ[sum += #!/2^#] &] + 1 (* Robert Price, Apr 04 2019 *)
  • PARI
    is_A215972(n)=denominator(sum(k=1,n-1,k!/2^k))==1
    
  • PARI
    s=0;for(k=1,9e9,denominator(s+=k!/2^k)==1&print1(k+1,","))

Formula

A215974(n)=A215972(n)-1 for all n. (A215974 is the same with another convention for the upper limit of the sum.)

Extensions

Terms through a(20) from Aart Blokhuis and Benne de Weger, Aug 30 2012, who thank Jan Willem Knopper for efficient programming. - N. J. A. Sloane, Aug 30 2012

A215976 2-adic valuation of the denominator of sum( k!/2^k, k=1..n ).

Original entry on oeis.org

1, 0, 2, 2, 0, 2, 3, 3, 3, 3, 2, 0, 3, 0, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 0, 3, 4, 4, 0, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 2, 4, 0, 5, 5, 5, 5, 4, 0, 5, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Comments

By construction, this denominator is always a power of 2, the present sequence specifies which power. The sum is an integer iff a(n)=0, the corresponding n are listed in A215974 (= A215972 - 1).

Crossrefs

The numerator of the sum is given in A215990.

Programs

  • PARI
    s=0;for(k=1,199,print1(valuation(denominator(s+=k!/2^k),2),","))

Formula

denominator( sum( k!/2^k, k=1..n )) = 2^a(n).
a(n)=0 <=> n is in A215974 <=> n+1 is in A215972.

A215990 Numerator of sum( k!/2^k, k=1..n ).

Original entry on oeis.org

0, 1, 1, 7, 13, 7, 73, 461, 1721, 7391, 35741, 95833, 140902, 7208291, 6221977, 738064507, 5846167507, 49265043007, 440034922507, 4152348777757, 41275487330257, 431068442131507, 4718790944945257, 27013799863651691, 322866652557800441, 502628413904332477
Offset: 0

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Comments

If a(n) is even, then A215976(n)=0 (and n is listed in A215974); the converse is not necessarily true.

Programs

  • Mathematica
    Table[Numerator[Sum[k!/2^k,{k,n}]],{n,0,30}] (* Harvey P. Dale, Jul 02 2017 *)
  • PARI
    a(n)=numerator(sum(k=1,n,k!/2^k))
    
  • PARI
    s=0;for(k=1,29,print1(numerator(s+=k!/2^k),","))

A216056 Primes p such that p divides the numerator of Sum( k!/2^k, k=1..p-1 ).

Original entry on oeis.org

234781, 115480283
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2012

Keywords

Crossrefs

Showing 1-4 of 4 results.