cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A215974 Numbers n such that Sum_{k=1..n} k!/2^k is an integer.

Original entry on oeis.org

0, 2, 5, 12, 14, 25, 29, 54, 60, 62, 3445, 108995, 3625182, 13951972, 28010901, 7165572247, 14335792539, 114636743486, 229264368709, 458534096494
Offset: 1

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Comments

This sequence lists the indices n for which A215976(n)=0 (power of 2 in denominator) and for which A215990 (numerator of the sum) may be even.

Examples

			a(1)=0 is in the sequence because sum(..., 1 <= k <= 0)=0 (empty sum) is an integer.
1 is not in the sequence because 1!/2^1 = 1/2 is not an integer.
a(2)=2 is in the sequence because 1!/2^1 + 2!/2^2 = 1 is an integer.
		

Crossrefs

Programs

  • Mathematica
    sum = 0; Select[Range[0, 10^4], IntegerQ[sum += #!/2^#] &] (* Robert Price, Apr 04 2019 *)
  • PARI
    is_A215974(n)=denominator(sum(k=1,n,k!/2^k))==1
    
  • PARI
    s=0;for(k=1,9e9,denominator(s+=k!/2^k)==1&print1(k,","))

Formula

A215974(n) = A215972(n)-1 for all n. (The two sequences differ only in the use of the upper limit. The present convention seems more natural, the other one was used in the post on the NmbrThry list.)

Extensions

Terms through a(20) from Aart Blokhuis and Benne de Weger, Aug 30 2012, who thank Jan Willem Knopper for efficient programming. - N. J. A. Sloane, Aug 30 2012

A216042 Numbers k such that Sum_{j=1..k-1} (2*j)!/4^j is an integer.

Original entry on oeis.org

1, 3, 53, 106, 427, 3416, 6806, 13665, 27330, 130030, 220227, 437666
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term > 1900000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=k*(2k-1)/2;]; seq

A216043 Numbers k such that Sum_{j=1..k-1} (2j)!/3^j is an integer.

Original entry on oeis.org

1, 4, 12, 105, 112, 322, 8807, 8831
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term > 2000000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=2*k*(2k-1)/3;]; seq

A216044 Numbers k such that Sum_{j=1..k-1} (4j)!/16^j is an integer.

Original entry on oeis.org

1, 3, 13, 15, 61, 106, 253, 27545, 62785, 218107, 1004593
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term > 1200000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=k*(4*k-1)*(4*k-2)*(4*k-3)/4;]; seq

A216045 Numbers k such that Sum_{j=1..k-1} (4j)!/5^j is an integer.

Original entry on oeis.org

1, 6, 30, 145, 151, 592, 732, 3895, 87806, 292432
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term is > 1500000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=4*k*(4*k-1)*(4*k-2)*(4*k-3)/5;]; seq

A215976 2-adic valuation of the denominator of sum( k!/2^k, k=1..n ).

Original entry on oeis.org

1, 0, 2, 2, 0, 2, 3, 3, 3, 3, 2, 0, 3, 0, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 0, 3, 4, 4, 0, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 2, 4, 0, 5, 5, 5, 5, 4, 0, 5, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Comments

By construction, this denominator is always a power of 2, the present sequence specifies which power. The sum is an integer iff a(n)=0, the corresponding n are listed in A215974 (= A215972 - 1).

Crossrefs

The numerator of the sum is given in A215990.

Programs

  • PARI
    s=0;for(k=1,199,print1(valuation(denominator(s+=k!/2^k),2),","))

Formula

denominator( sum( k!/2^k, k=1..n )) = 2^a(n).
a(n)=0 <=> n is in A215974 <=> n+1 is in A215972.

A216056 Primes p such that p divides the numerator of Sum( k!/2^k, k=1..p-1 ).

Original entry on oeis.org

234781, 115480283
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2012

Keywords

Crossrefs

A216149 Numbers k such that Sum_{j=1..k-1} (3*j)!/5^j is an integer.

Original entry on oeis.org

1, 3, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2012

Keywords

Comments

The next term, if it exists, is greater than 1000000. - Vaclav Kotesovec, Sep 11 2012

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=3*k*(3*k-1)*(3*k-2)/5;]; seq
    Select[Range[20],IntegerQ[Sum[(3k)!/5^k,{k,#-1}]]&] (* Harvey P. Dale, Apr 07 2019 *)
Showing 1-8 of 8 results.