cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A215972 Numbers k such that Sum_{j=1..k-1} j!/2^j is an integer.

Original entry on oeis.org

1, 3, 6, 13, 15, 26, 30, 55, 61, 63, 3446, 108996, 3625183, 13951973, 28010902, 7165572248, 14335792540, 114636743487, 229264368710, 458534096495
Offset: 1

Views

Author

M. F. Hasler, Aug 29 2012

Keywords

Examples

			a(1)=1 is in the sequence because sum(..., 0<k<1)=0 (empty sum) is an integer.
2 is not in the sequence because 1!/2^1 = 1/2 is not an integer.
a(2)=3 is in the sequence because 1!/2^1 + 2!/2^2 = 1 is an integer.
		

Crossrefs

Programs

  • Mathematica
    sum = 0; Select[Range[0, 10^4], IntegerQ[sum += #!/2^#] &] + 1 (* Robert Price, Apr 04 2019 *)
  • PARI
    is_A215972(n)=denominator(sum(k=1,n-1,k!/2^k))==1
    
  • PARI
    s=0;for(k=1,9e9,denominator(s+=k!/2^k)==1&print1(k+1,","))

Formula

A215974(n)=A215972(n)-1 for all n. (A215974 is the same with another convention for the upper limit of the sum.)

Extensions

Terms through a(20) from Aart Blokhuis and Benne de Weger, Aug 30 2012, who thank Jan Willem Knopper for efficient programming. - N. J. A. Sloane, Aug 30 2012

A216042 Numbers k such that Sum_{j=1..k-1} (2*j)!/4^j is an integer.

Original entry on oeis.org

1, 3, 53, 106, 427, 3416, 6806, 13665, 27330, 130030, 220227, 437666
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term > 1900000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=k*(2k-1)/2;]; seq

A216043 Numbers k such that Sum_{j=1..k-1} (2j)!/3^j is an integer.

Original entry on oeis.org

1, 4, 12, 105, 112, 322, 8807, 8831
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term > 2000000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=2*k*(2k-1)/3;]; seq

A216045 Numbers k such that Sum_{j=1..k-1} (4j)!/5^j is an integer.

Original entry on oeis.org

1, 6, 30, 145, 151, 592, 732, 3895, 87806, 292432
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 30 2012

Keywords

Comments

Next term is > 1500000.

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=4*k*(4*k-1)*(4*k-2)*(4*k-3)/5;]; seq

A216149 Numbers k such that Sum_{j=1..k-1} (3*j)!/5^j is an integer.

Original entry on oeis.org

1, 3, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2012

Keywords

Comments

The next term, if it exists, is greater than 1000000. - Vaclav Kotesovec, Sep 11 2012

Crossrefs

Programs

  • Mathematica
    seq={}; sum=0; fak=1; k=0; While[k<10000, sum+=fak; If[Denominator[sum]==1, AppendTo[seq,k+1]]; k++; fak*=3*k*(3*k-1)*(3*k-2)/5;]; seq
    Select[Range[20],IntegerQ[Sum[(3k)!/5^k,{k,#-1}]]&] (* Harvey P. Dale, Apr 07 2019 *)
Showing 1-5 of 5 results.