A215978 Number of simple unlabeled graphs on n nodes with connected components that are trees or cycles.
1, 1, 2, 4, 8, 14, 28, 52, 104, 206, 429, 903, 1982, 4430, 10206, 23966, 57522, 140236, 347302, 870682, 2207819, 5651437, 14590703, 37948338, 99358533, 261684141, 692906575, 1843601797, 4926919859, 13220064562, 35604359531, 96218568474, 260850911485
Offset: 0
Keywords
Examples
a(4) = 8: .o-o. .o-o. .o-o. .o-o. .o-o. .o-o. .o-o. .o o. .| |. .| . .|\ . .|/ . .| . . . . . . . .o-o. .o-o. .o o. .o o. .o o. .o-o. .o o. .o o.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) end: g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 end: p:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i)+j-1,j)*p(n-i*j, i-1), j=0..n/i))) end: a:= n-> p(n, n): seq(a(n), n=0..40);
-
Mathematica
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)]; g[n_] := g[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; p[n_, i_] := p[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i] + j - 1, j]*p[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := p[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial, divisors @cacheit def b(n): return n if n<2 else sum([sum([d*b(d) for d in divisors(j)])*b(n - j) for j in range(1, n)])//(n - 1) @cacheit def g(n): return (1 if n>2 else 0) + b(n) - (sum([b(k)*b(n - k) for k in range(n + 1)]) - (b(n//2) if n%2==0 else 0))//2 @cacheit def p(n, i): return 1 if n==0 else 0 if i<1 else sum([binomial(g(i) + j - 1, j)*p(n - i*j, i - 1) for j in range(n//i + 1)]) def a(n): return p(n, n) print([a(n) for n in range(41)]) # Indranil Ghosh, Aug 07 2017
Formula
a(n) = Sum_{k=0..n} A215977(n,k).
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.95576528565199497471481752412... is Otter's rooted tree constant, and c = 1.085767435235426664262830616636... . - Vaclav Kotesovec, Mar 22 2017