cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051491 Decimal expansion of Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/A000081(n).

Original entry on oeis.org

2, 9, 5, 5, 7, 6, 5, 2, 8, 5, 6, 5, 1, 9, 9, 4, 9, 7, 4, 7, 1, 4, 8, 1, 7, 5, 2, 4, 1, 2, 3, 1, 9, 4, 5, 8, 8, 3, 7, 5, 4, 9, 2, 3, 0, 4, 6, 6, 3, 5, 9, 6, 5, 9, 5, 3, 5, 0, 4, 7, 2, 4, 7, 8, 9, 0, 5, 9, 6, 4, 7, 3, 3, 1, 3, 9, 5, 7, 4, 9, 5, 1, 0, 8, 6, 6, 6, 8, 2, 8, 3, 6, 7, 6, 5, 8, 1, 3, 5, 2, 5, 3
Offset: 1

Views

Author

Keywords

Comments

A000055(n) ~ A086308 * A051491^n * n^(-5/2), A000081(n) ~ A187770 * A051491^n * n^(-3/2). - Vaclav Kotesovec, Jan 04 2013
Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 481) has a wrong value of this constant (2.9955765856). - Vaclav Kotesovec, Jan 04 2013

Examples

			2.95576528565199497471481752412319458837549230466359659535...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.

Crossrefs

Programs

  • Mathematica
    digits = 99; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1+Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; RealDigits[alpha, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

A215977 Number T(n,k) of simple unlabeled graphs on n nodes with exactly k connected components that are trees or cycles; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 4, 5, 3, 1, 1, 0, 7, 10, 6, 3, 1, 1, 0, 12, 17, 12, 6, 3, 1, 1, 0, 24, 33, 23, 13, 6, 3, 1, 1, 0, 48, 62, 47, 25, 13, 6, 3, 1, 1, 0, 107, 127, 92, 53, 26, 13, 6, 3, 1, 1, 0, 236, 267, 189, 106, 55, 26, 13, 6, 3, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2012

Keywords

Examples

			T(4,1) = 3: .o-o.  .o-o.  .o-o.
            .| |.  .|  .  .|\ .
            .o-o.  .o-o.  .o o.
.
T(4,2) = 3: .o-o.  .o-o.  .o-o.
            .|/ .  .|  .  .   .
            .o o.  .o o.  .o-o.
.
T(5,1) = 4: .o-o-o.  .o-o-o.  .o-o-o.  .o-o-o.
            .|  / .  .|    .  .| |  .  . /|  .
            .o-o  .  .o-o  .  .o o  .  .o o  .
.
T(5,2) = 5: .o-o o.  .o-o o.  .o-o o.  .o o-o.  .o o-o.
            .| |  .  .|    .  .|\   .  .|\   .  .|    .
            .o-o  .  .o-o  .  .o o  .  .o-o  .  .o-o  .
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,  1;
  0,  3,  3,  1,  1;
  0,  4,  5,  3,  1,  1;
  0,  7, 10,  6,  3,  1,  1;
  0, 12, 17, 12,  6,  3,  1,  1;
  ...
		

Crossrefs

Row sums give: A215978.
Limiting sequence of reversed rows gives: A215979.
The labeled version of this triangle is A215861.

Programs

  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)];
    g[n_] := g[n] = If[n>2, 1, 0]+b[n]-(Sum [b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
    p[n_, i_, t_] := p[n, i, t] = If[nJean-François Alcover, Dec 04 2014, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, divisors
    @cacheit
    def b(n): return n if n<2 else sum([sum([d*b(d) for d in divisors(j)])*b(n - j) for j in range(1, n)])//(n - 1)
    @cacheit
    def g(n): return (1 if n>2 else 0) + b(n) - (sum(b(k)*b(n - k) for k in range(n + 1)) - (b(n//2) if n%2==0 else 0))//2
    @cacheit
    def p(n, i, t): return 0 if nIndranil Ghosh, Aug 07 2017

A144164 Number of simple graphs on n labeled nodes, where each maximally connected subgraph is either a tree or a cycle, also row sums of A144163, A215861.

Original entry on oeis.org

1, 1, 2, 8, 45, 338, 3304, 40485, 602075, 10576466, 214622874, 4941785261, 127282939615, 3625467047196, 113140481638088, 3838679644895477, 140681280613912089, 5538276165405744140, 233086092164091031114, 10443453353262112373541, 496313160155209940833001
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			a(3) = 8, because there are 8 simple graphs on 3 labeled nodes, where each maximally connected subgraph is either a tree or a cycle, with edge-counts 0(1), 1(3), 2(3), 3(1):
.1.2. .1-2. .1.2. .1.2. .1-2. .1.2. .1-2. .1-2.
..... ..... ../.. .|... ../.. .|/.. .|... .|/..
.3... .3... .3... .3... .3... .3... .3... .3...
		

Crossrefs

Row sums of triangles A144163, A215861.
The unlabeled version is A215978.

Programs

  • Maple
    f:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n<=k then 0 elif k=n-1 then n^(n-2) else add(binomial(n-1,j) *f(j+1,j) *f(n-1-j,k-j), j=0..k) fi end:
    c:= proc(n,k) option remember; local i,j; if k=0 then 1 elif k<0 or n add(T(n,k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    f[n_, k_] := f[n, k] = Module[{j}, Which[k == 0, 1, k<0 || n <= k, 0, k == n-1, n^(n-2), True, Sum[Binomial[n-1, j]*f[j+1, j]*f[n-1-j, k-j], {j, 0, k}]]]; c[n_, k_] := c[n, k] = Module[{i, j}, If[k == 0, 1, If[k<0 || nJean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, prod
    @cacheit
    def f(n, k): return 1 if k==0 else 0 if k<0 or n<=k else n**(n - 2) if k == n - 1 else sum(binomial(n - 1, j)*f(j + 1, j)*f(n - 1 - j, k - j) for j in range(k + 1))
    @cacheit
    def c(n, k): return 1 if k==0 else 0 if k<0 or nIndranil Ghosh, Aug 07 2017

Formula

a(n) = Sum_{k=0..n} A144163(n,k).
a(n) ~ c * n^(n-2), where c = 1.66789780037... . - Vaclav Kotesovec, Sep 08 2014

A215981 Number of simple unlabeled graphs on n nodes with exactly 1 connected component that is a tree or a cycle.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 12, 24, 48, 107, 236, 552, 1302, 3160, 7742, 19321, 48630, 123868, 317956, 823066, 2144506, 5623757, 14828075, 39299898, 104636891, 279793451, 751065461, 2023443033, 5469566586, 14830871803, 40330829031, 109972410222, 300628862481
Offset: 1

Views

Author

Alois P. Heinz, Aug 29 2012

Keywords

Examples

			a(5) = 4: .o-o-o.  .o-o-o.  .o-o-o.  .o-o-o.
          .|  / .  .|    .  .| |  .  . /|  .
          .o-o  .  .o-o  .  .o o  .  .o o  .
		

Crossrefs

Column k=1 of A215977.
The labeled version is A215851.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
          (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
        end:
    seq(a(n), n=1..40);
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
    a[n_] := a[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Array[a, 40] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

Formula

a(1) = a(2) = 1, a(n) = 1 + A000055(n) for n>=3.
Showing 1-4 of 4 results.