A215978
Number of simple unlabeled graphs on n nodes with connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 2, 4, 8, 14, 28, 52, 104, 206, 429, 903, 1982, 4430, 10206, 23966, 57522, 140236, 347302, 870682, 2207819, 5651437, 14590703, 37948338, 99358533, 261684141, 692906575, 1843601797, 4926919859, 13220064562, 35604359531, 96218568474, 260850911485
Offset: 0
a(4) = 8:
.o-o. .o-o. .o-o. .o-o. .o-o. .o-o. .o-o. .o o.
.| |. .| . .|\ . .|/ . .| . . . . . . .
.o-o. .o-o. .o o. .o o. .o o. .o-o. .o o. .o o.
The labeled version is
A144164. The inverse Euler transform is
A215981.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i)+j-1,j)*p(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> p(n, n):
seq(a(n), n=0..40);
-
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
g[n_] := g[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
p[n_, i_] := p[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i] + j - 1, j]*p[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := p[n, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
-
from sympy.core.cache import cacheit
from sympy import binomial, divisors
@cacheit
def b(n): return n if n<2 else sum([sum([d*b(d) for d in divisors(j)])*b(n - j) for j in range(1, n)])//(n - 1)
@cacheit
def g(n): return (1 if n>2 else 0) + b(n) - (sum([b(k)*b(n - k) for k in range(n + 1)]) - (b(n//2) if n%2==0 else 0))//2
@cacheit
def p(n, i): return 1 if n==0 else 0 if i<1 else sum([binomial(g(i) + j - 1, j)*p(n - i*j, i - 1) for j in range(n//i + 1)])
def a(n): return p(n, n)
print([a(n) for n in range(41)]) # Indranil Ghosh, Aug 07 2017
A215981
Number of simple unlabeled graphs on n nodes with exactly 1 connected component that is a tree or a cycle.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 12, 24, 48, 107, 236, 552, 1302, 3160, 7742, 19321, 48630, 123868, 317956, 823066, 2144506, 5623757, 14828075, 39299898, 104636891, 279793451, 751065461, 2023443033, 5469566586, 14830871803, 40330829031, 109972410222, 300628862481
Offset: 1
a(5) = 4: .o-o-o. .o-o-o. .o-o-o. .o-o-o.
.| / . .| . .| | . . /| .
.o-o . .o-o . .o o . .o o .
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
a:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
seq(a(n), n=1..40);
-
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
a[n_] := a[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
Array[a, 40] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
A215980
Number of simple unlabeled graphs on n nodes with exactly 10 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 56, 115, 247, 533, 1175, 2635, 6037, 14069, 33378, 80466, 196759, 487453, 1221515, 3092719, 7901816, 20354765, 52815434, 137946253, 362430959, 957359614, 2541249138, 6775848932, 18141119582, 48753971355, 131485310625, 355759469235
Offset: 10
a(12) = 3: .o-o o o o o. .o-o o o o o. .o o o o o o.
.|/ . .| . .| | .
.o o o o o o. .o o o o o o. .o o o o o o.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 10):
seq(a(n), n=10..50);
A215982
Number of simple unlabeled graphs on n nodes with exactly 2 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 5, 10, 17, 33, 62, 127, 267, 587, 1326, 3085, 7326, 17731, 43585, 108563, 273544, 696113, 1787042, 4623125, 12043071, 31565842, 83200763, 220413272, 586625403, 1567930743, 4207181144, 11329835687, 30613313339, 82975300030, 225552632043, 614787508640
Offset: 2
a(5) = 5: .o-o o. .o-o o. .o-o o. .o o-o. .o o-o.
.| | . .| . .|\ . .|\ . .| .
.o-o . .o-o . .o o . .o-o . .o-o .
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 2):
seq(a(n), n=2..40);
-
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n>2, 1, 0]+b[n]-(Sum [b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; p[n_, i_, t_] := p[n, i, t] = If[nJean-François Alcover, Dec 04 2014, translated from Maple *)
-
from sympy.core.cache import cacheit
from sympy import binomial, divisors
@cacheit
def b(n): return n if n<2 else sum([sum([d*b(d) for d in divisors(j)])*b(n - j) for j in range(1, n)])//(n - 1)
@cacheit
def g(n): return (1 if n>2 else 0) + b(n) - (sum([b(k)*b(n - k) for k in range(n + 1)]) - (b(n//2) if n%2==0 else 0))//2
@cacheit
def p(n, i, t): return 0 if nIndranil Ghosh, Aug 07 2017
A215983
Number of simple unlabeled graphs on n nodes with exactly 3 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 12, 23, 47, 92, 189, 401, 869, 1949, 4475, 10520, 25183, 61366, 151555, 379164, 958555, 2446746, 6296819, 16326996, 42613240, 111889355, 295372835, 783598713, 2088175182, 5587741350, 15009229137, 40458659246, 109416872688, 296810505298
Offset: 3
a(5) = 3: .o o-o. .o o-o. .o o o.
. |/ . . | . .| | .
.o o . .o o . .o o .
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 3):
seq(a(n), n=3..40);
-
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
g[n_] := g[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
p[n_, i_, t_] := p[n, i, t] = If[n < t, 0, If[n == t, 1, If[Min[i, t] < 1, 0, Sum[Binomial[g[i] + j - 1, j]*p[n - i*j, i - 1, t - j], {j, 0, Min[n/i, t]}]]]];
a[n_] := p[n, n, 3];
a /@ Range[3, 40] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
A215984
Number of simple unlabeled graphs on n nodes with exactly 4 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 25, 53, 106, 224, 475, 1037, 2315, 5302, 12382, 29495, 71450, 175618, 437272, 1101000, 2799768, 7181703, 18565546, 48326482, 126581749, 333424119, 882765486, 2348114866, 6272676477, 16822741588, 45281587081, 122295734356, 331331765694
Offset: 4
a(6) = 3: .o-o o. .o-o o. .o o o.
.|/ . .| . .| | .
.o o o. .o o o. .o o o.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 4):
seq(a(n), n=4..40);
A215985
Number of simple unlabeled graphs on n nodes with exactly 5 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 55, 112, 238, 510, 1117, 2498, 5712, 13322, 31643, 76455, 187382, 465393, 1168966, 2966298, 7594035, 19597653, 50933434, 133224112, 350477003, 926855665, 2462830565, 6572892862, 17612586165, 47369774428, 127841265076, 346120109957
Offset: 5
a(7) = 3: .o-o o o. .o-o o o. .o o o o.
.|/ . .| . .| | .
.o o o . .o o o . .o o o .
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 5):
seq(a(n), n=5..40);
A215986
Number of simple unlabeled graphs on n nodes with exactly 6 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 56, 114, 244, 524, 1152, 2578, 5902, 13750, 32637, 78745, 192755, 478071, 1199357, 3039832, 7774296, 20043911, 52049890, 136041966, 357650346, 945253939, 2510351950, 6696412901, 17935526721, 48218592753, 130083292745, 352068892155
Offset: 6
a(8) = 3: .o-o o o. .o-o o o. .o o o o.
.|/ . .| . .| | .
.o o o o. .o o o o. .o o o o.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 6):
seq(a(n), n=6..40);
A215987
Number of simple unlabeled graphs on n nodes with exactly 7 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 56, 115, 246, 530, 1166, 2613, 5982, 13940, 33073, 79760, 195109, 483615, 1212485, 3071358, 7850690, 20231286, 52513864, 137202595, 360578812, 952705531, 2529454122, 6745724961, 18063628118, 48553319703, 130962595786, 354390168855
Offset: 7
a(9) = 3: .o-o o o o. .o-o o o o. .o o o o o.
.|/ . .| . .| | .
.o o o o . .o o o o . .o o o o .
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 7):
seq(a(n), n=7..50);
A215988
Number of simple unlabeled graphs on n nodes with exactly 8 connected components that are trees or cycles.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 56, 115, 247, 532, 1172, 2627, 6017, 14020, 33263, 80196, 196133, 485993, 1218103, 3084686, 7882748, 20309036, 52704689, 137675229, 361761187, 955688561, 2537043121, 6765174365, 18113821981, 48683671360, 131303094976, 355284353448
Offset: 8
a(10) = 3: .o-o o o o. .o-o o o o. .o o o o o.
.|/ . .| . .| | .
.o o o o o. .o o o o o. .o o o o o.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n p(n, n, 8):
seq(a(n), n=8..50);
Showing 1-10 of 12 results.