A216022 Largest number m such that the Collatz trajectory starting at n contains all numbers not greater than m.
1, 2, 5, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
n = 3->10->5->16->8->4->2->1 => {1_2_3_4_5 8 10 16}, a(3) = 5; n = 4->2->1 => {1_2 4}, a(4) = 2; n = 5->16->8->4->2->1 => {1_2 4 5 8 16}, a(5) = 2; n = 6->3->10->5->16->8->4->2->1 => {1_2_3_4_5_6 8 10 16}, a(6) = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
import Data.List (sort) a216022 = length . takeWhile (== 0) . zipWith (-) [1..] . sort . a070165_row
-
Mathematica
scoll[n_]:=Sort[NestWhileList[If[EvenQ[#],#/2,3#+1] &,n,#>1 &]]; Join[{1,2},Table[i=1; While[scoll[n][[i]]==i,i++]; i-1,{n,3,86}]] (* Jayanta Basu, May 27 2013 *) Join[{1,2},Flatten[Table[Position[Differences[Sort[ NestWhileList[ If[ EvenQ[#],#/2,3#+1]&,n,#>1&]]], ?(#>1&),1,1],{n,90}]]] (* _Harvey P. Dale, Nov 29 2019 *)
Comments