cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216073 The list of the a(n)-values in the common solutions to k+1=b^2 and 6*k+1=a^2.

Original entry on oeis.org

1, 7, 17, 71, 169, 703, 1673, 6959, 16561, 68887, 163937, 681911, 1622809, 6750223, 16064153, 66820319, 159018721, 661452967, 1574123057, 6547709351, 15582211849, 64815640543, 154247995433, 641608696079, 1526897742481, 6351271320247, 15114729429377, 62871104506391
Offset: 1

Views

Author

Paul Weisenhorn, Sep 01 2012

Keywords

Comments

The equations are equivalent to the Pell equation a^2 - 6*b^2 = -5 with the 2 fundamental solutions (1;1) and (7;3) and the solution (5;2) for the unit form.
The associated b(n) are in A080806.
A181442(n) = (A080806(n) + 1)/2.
A180483(n) = (a(n) + 5)/2.

Crossrefs

Programs

  • Maple
    a(1)=1: a(2)=7: a(3)=17: a(4)=71:
    for n from 5 to 20 do
      a(n)=10*a(n-2)-a(n-4):
      printf("%9d%20d\n",n,a(n)):
    end do:
  • Mathematica
    LinearRecurrence[{0,10,0,-1}, {1,7,17,71}, 50] (* G. C. Greubel, Feb 22 2017 *)
  • PARI
    a(n) = if(n<1, 0, if(n<5, [1,7,17, 71][n], 10*a(n-2)-a(n-4) ) );
    /* Joerg Arndt, Sep 03 2012 */
    
  • SageMath
    def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5)
    def A216073(n): return b(n) +7*b(n-1) +7*b(n-2) +b(n-3)
    [A216073(n) for n in (0..50)] # G. C. Greubel, Apr 28 2022

Formula

a(n) = 10*a(n-2) - a(n-4).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-10*x^2+x^4).
a(2*n+1) = ((1+r)*(5+2*r)^n + (1-r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(2*n+2) = ((7+3*r)*(5+2*r)^n + (7-3*r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(n) = -((5-2*r)^(1/4)*((2*r+5)^((-1)^n/4+n/2)*(-1)^n - r*(2*r+5)^((-1)^n/4+n/2)) + (2*r+5)^(1/4)*((5-2*r)^((-1)^n/4+n/2)*(-1)^n + (5-2*r)^((-1)^n/4+n/2)*r))/(2*(5-2*r)^(1/4)*(2*r+5)^(1/4)) with r=sqrt(6) and 1<=n. - Alexander R. Povolotsky, Sep 01 2012
a(n) = b(n) +7*b(n-1) +7*b(n-2) +b(n-3), where b(n) = (1/2)*(1 +(-1)^n)* ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022