A216091 Numbers n such that k == k^(q-1) mod q for k = 1, 2, ..., q-1, where q = n^2+1.
1, 3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 47, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345
Offset: 1
Keywords
Examples
3 is in the sequence because, for q = 3^2 + 1 = 10 we obtain the congruences: 1^9 = 1 == 1 mod 10; 2^9 = 512 == 2 mod 10; 3^9 = 19683 == 3 mod 10; 4^9 = 262144 == 4 mod 10; 5^9 = 1953125 == 5 mod 10; 6^9 = 10077696 == 6 mod 10, 7^9 = 40353607 == 7 mod 10; 8^9 = 134217728 == 8 mod 10; 9^9 = 387420489 == 9 mod 10.
Crossrefs
Cf. A002731.
Programs
-
Maple
with(numtheory):for n from 1 by 2 to 500 do:q:=n^2+1:if type(x,prime)=false then j:=0:for i from 1 to q do: if irem(i^(q-1),q)=i then j:=j+1:else fi:od:if j=q-1 then printf(`%d, `, n):else fi:fi:od:
-
Mathematica
f[n_] := Module[{q = n^2 + 1}, And @@ Table[PowerMod[k, q - 1, q] == k, {k, q - 1}]]; Select[Range[345], f] (* T. D. Noe, Sep 03 2012 *)
Comments