cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216118 Triangle read by rows: T(n,k) is the number of stretching pairs in all permutations in S_{n,k} (=set of permutations in S_n with k cycles) (n >= 3; 1 <= k <= n-2).

Original entry on oeis.org

0, 1, 1, 10, 15, 5, 90, 165, 90, 15, 840, 1750, 1225, 350, 35, 8400, 19180, 15750, 5950, 1050, 70, 90720, 222264, 204624, 92610, 22050, 2646, 126, 1058400, 2744280, 2757720, 1421490, 411600, 67620, 5880, 210, 13305600, 36162720, 38980920, 22203720, 7408170, 1496880, 180180, 11880, 330
Offset: 3

Views

Author

Emeric Deutsch, Feb 26 2013

Keywords

Comments

A stretching pair of a permutation p in S_n is a pair (i,j) (1 <= i < j <= n) satisfying p(i) < i < j < p(j). For example, for the permutation 31254 in S_5 the pair (2,4) is stretching because 1< p(2) < 2 < 4 < p(4) = 5.
Number of entries in row n (n >= 3) is n - 2.
Sum of entries in row n is A216119(n).
T(n,1) = A061206(n-3).

Examples

			T(4,1) = 1, T(4,2) = 1 because 22 permutations in S_4 have no stretching pairs, the 1-cycle 3142 has the stretching pair (2,3) and the 2-cycle 2143 has the stretching pair (2,3).
Triangle starts:
    0;
    1,    1;
   10,   15,    5;
   90,  165,   90,  15;
  840, 1750, 1225, 350, 35;
  ...
		

References

  • E. Lundberg and B. Nagle, A permutation statistic arising in dynamics of internal maps. (submitted)

Crossrefs

Programs

  • GAP
    List([3..12],n->List([1..n-2],k->Binomial(n,4)*Stirling1(n-2,k))); # Muniru A Asiru, Dec 13 2018
    
  • Magma
    [[(-1)^(n-k)*Binomial(n,4)*StirlingFirst(n-2,k): k in [1..n-2]]: n in [3..12]]; // G. C. Greubel, Dec 13 2018
    
  • Maple
    with(combinat): T := proc (n, k) options operator, arrow: binomial(n, 4)*abs(stirling1(n-2, k)) end proc: for n from 3 to 12 do seq(T(n, k), k = 1 .. n-2) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n, 4] * Abs[StirlingS1[n-2, k]]; Table[T[n, k], {n, 3, 12}, {k, 1, n-2}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*binomial(n,4)*stirling(n-2,k,1)};
    for(n=3, 10, for(k=1,n-2, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 13 2018
    
  • Sage
    [[binomial(n,4)*stirling_number1(n-2,k) for k in (1..n-2)] for n in (3..12)] # G. C. Greubel, Dec 13 2018

Formula

T(n,k) = binomial(n,4)*abs(Stirling1(n-2,k)).
T(n,k) = binomial(n,4)*(-1)^(n-k)*Stirling1(n-2,k).