A216158 The total number of nonempty words in all length n finite languages on an alphabet of two letters.
0, 2, 6, 24, 72, 220, 652, 1848, 5160, 14130, 38102, 101296, 266328, 692740, 1785524, 4563888, 11577888, 29170128, 73032808, 181793136, 450100760, 1108868820, 2719167020, 6639085968, 16144137800, 39107596850, 94393612782, 227062741160, 544439640328, 1301446217244
Offset: 0
Keywords
Examples
a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 64.
Crossrefs
Cf. A102866.
Programs
-
Maple
h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add( (p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i))) end: a:= n-> h(n$2)[2]: seq(a(n), n=0..30); # Alois P. Heinz, Sep 24 2017
-
Mathematica
nn=30;p=Product[(1+y x^i)^(2^i),{i,1,nn}];CoefficientList[Series[D[p,y]/.y->1,{x,0,nn}],x]
Formula
a(n) = Sum_{k>0} k * A208741(n,k).
Comments