cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216158 The total number of nonempty words in all length n finite languages on an alphabet of two letters.

Original entry on oeis.org

0, 2, 6, 24, 72, 220, 652, 1848, 5160, 14130, 38102, 101296, 266328, 692740, 1785524, 4563888, 11577888, 29170128, 73032808, 181793136, 450100760, 1108868820, 2719167020, 6639085968, 16144137800, 39107596850, 94393612782, 227062741160, 544439640328, 1301446217244
Offset: 0

Views

Author

Geoffrey Critzer, Sep 03 2012

Keywords

Comments

A finite language is a set of distinct words with size being the total number of letters in all words.

Examples

			a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.
		

Crossrefs

Cf. A102866.

Programs

  • Maple
    h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
          (p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> h(n$2)[2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 24 2017
  • Mathematica
    nn=30;p=Product[(1+y x^i)^(2^i),{i,1,nn}];CoefficientList[Series[D[p,y]/.y->1,{x,0,nn}],x]

Formula

a(n) = Sum_{k>0} k * A208741(n,k).