A216165 Composite numbers and 1 which yield a prime whenever a 1 is inserted anywhere in them, including at the beginning or end.
1, 49, 63, 81, 91, 99, 117, 123, 213, 231, 279, 319, 427, 459, 621, 697, 721, 801, 951, 987, 1113, 1131, 1261, 1821, 1939, 2101, 2149, 2211, 2517, 2611, 3151, 3219, 4011, 4411, 4887, 5031, 5361, 6231, 6487, 7011, 7209, 8671, 9141, 9801, 10051, 10161, 10281
Offset: 1
Examples
7209 is not prime but 72091, 72019, 72109, 71209 and 17209 are all primes.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Magma
[n: n in [1..11000] | not IsPrime(n) and forall{m: t in [0..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+1)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012
-
Maple
with(numtheory); A216165:=proc(q,x) local a,b,c,i,n,ok; for n from 1 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216165(1000,1);
-
Mathematica
Join[{1},Select[Range[11000],CompositeQ[#]&&AllTrue[FromDigits/@ Table[ Insert[ IntegerDigits[#],1,i],{i,IntegerLength[#]+1}],PrimeQ]&]] (* Harvey P. Dale, Mar 24 2017 *) (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 24 2017 *)