cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216167 Composite numbers which yield a prime whenever a 5 is inserted anywhere in them, excluding at the end.

Original entry on oeis.org

9, 21, 57, 63, 69, 77, 87, 93, 153, 231, 381, 407, 413, 417, 501, 531, 581, 651, 669, 741, 749, 783, 791, 987, 1241, 1551, 1797, 1971, 2189, 2981, 3381, 3419, 3591, 3951, 4083, 4503, 4833, 4949, 4959, 5049, 5117, 5201, 5229, 5243, 5529, 5547, 5603, 5691, 5697
Offset: 1

Views

Author

Paolo P. Lava, Sep 03 2012

Keywords

Examples

			4083 is not prime but 40853, 40583, 45083 and 54083 are all primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6000] | not IsPrime(n) and forall{m: t in [1..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+5)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012
    
  • Maple
    with(numtheory);
    A216167:=proc(q,x)
    local a,b,c,i,n,ok;
    for n from 1 to q do
    if not isprime(n) then
      a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1;
      for i from 1 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x;
        if not isprime(c) then ok:=0; break; fi;
      od;
      if ok=1 then print(n); fi;
    fi;
    od; end:
    A216167(1000,5);
  • Mathematica
    Select[Range[6000],CompositeQ[#]&&AllTrue[FromDigits/@Table[Insert[IntegerDigits[#],5,p],{p,IntegerLength[#]}],PrimeQ]&] (* Harvey P. Dale, Oct 02 2022 *)
  • Python
    from sympy import isprime
    def ok(n):
        if n < 2 or n%10 not in {1, 3, 7, 9} or isprime(n): return False
        s = str(n)
        return all(isprime(int(s[:i] + '5' + s[i:])) for i in range(len(s)))
    print(list(filter(ok, range(5698)))) # Michael S. Branicky, Sep 21 2021