A216167 Composite numbers which yield a prime whenever a 5 is inserted anywhere in them, excluding at the end.
9, 21, 57, 63, 69, 77, 87, 93, 153, 231, 381, 407, 413, 417, 501, 531, 581, 651, 669, 741, 749, 783, 791, 987, 1241, 1551, 1797, 1971, 2189, 2981, 3381, 3419, 3591, 3951, 4083, 4503, 4833, 4949, 4959, 5049, 5117, 5201, 5229, 5243, 5529, 5547, 5603, 5691, 5697
Offset: 1
Examples
4083 is not prime but 40853, 40583, 45083 and 54083 are all primes.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..1923 (terms 1..300 from Paolo P. Lava)
Crossrefs
Programs
-
Magma
[n: n in [1..6000] | not IsPrime(n) and forall{m: t in [1..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+5)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012
-
Maple
with(numtheory); A216167:=proc(q,x) local a,b,c,i,n,ok; for n from 1 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 1 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216167(1000,5);
-
Mathematica
Select[Range[6000],CompositeQ[#]&&AllTrue[FromDigits/@Table[Insert[IntegerDigits[#],5,p],{p,IntegerLength[#]}],PrimeQ]&] (* Harvey P. Dale, Oct 02 2022 *)
-
Python
from sympy import isprime def ok(n): if n < 2 or n%10 not in {1, 3, 7, 9} or isprime(n): return False s = str(n) return all(isprime(int(s[:i] + '5' + s[i:])) for i in range(len(s))) print(list(filter(ok, range(5698)))) # Michael S. Branicky, Sep 21 2021