A216168 Composite numbers and 1 which yield a prime whenever a 7 is inserted anywhere in them, including at the beginning or end.
1, 9, 27, 33, 39, 57, 87, 159, 177, 187, 603, 717, 753, 949, 1257, 1707, 2277, 2367, 4317, 4623, 4779, 4797, 5773, 6757, 6777, 7017, 7471, 7479, 7747, 7797, 7813, 7977, 8797, 9777, 9987, 10777, 11757, 17679, 28269, 28437, 29779, 34177, 34771, 40059, 41721
Offset: 1
Examples
4623 is not prime but 46237, 46273, 46723, 47623 and 74623 are all primes.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..150
Crossrefs
Programs
-
Magma
[n: n in [1..50000] | not IsPrime(n) and forall{m: t in [0..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+7)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012
-
Maple
with(numtheory); A216168:=proc(q,x) local a,b,c,i,n,ok; for n from 1 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216168(1000,7);