A216169 Composite numbers > 9 which yield a prime whenever a 0 is inserted between any two digits.
49, 119, 121, 133, 161, 169, 203, 253, 299, 301, 319, 323, 403, 407, 473, 493, 511, 539, 551, 581, 611, 667, 679, 713, 869, 901, 913, 943, 1007, 1067, 1079, 1099, 1211, 1273, 1691, 1729, 1799, 1909, 2021, 2047, 2101, 2117, 2359, 2407, 2533, 2717, 2759, 2899
Offset: 1
Examples
2359 is not prime but 23509, 23059 and 20359 are all primes.
Links
- Paolo P. Lava and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1500 terms from Paolo P. Lava)
Crossrefs
Programs
-
Maple
A216169:=proc(q,x) local a,b,c,i,n,ok; for n from 10 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216169(1000,0);
-
Mathematica
Select[Range[10,3000],CompositeQ[#]&&AllTrue[Table[FromDigits[ Insert[ IntegerDigits[ #],0,n]],{n,2,IntegerLength[#]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2018 *)
-
PARI
is(n, L=logint(n+!n, 10)+1, P)={!isprime(n) && !for(k=1, L-1, isprime([10*P=10^(L-k),1]*divrem(n, P))||return) && n>9} \\ M. F. Hasler, May 10 2018
Extensions
Name edited by M. F. Hasler, May 10 2018