cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216170 Fermat pseudoprimes to base 2 of the form (n^2 + 2*n)/3.

Original entry on oeis.org

341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
Offset: 1

Views

Author

Marius Coman, Sep 03 2012

Keywords

Comments

The corresponding values of n: 31, 43, 85, 91, 109, 127, 157, 217, 277, 307, 451, 499, 697, 811, 919, 1021, 1261, 1327, 1399, 1459, 1471, 1729, 1777, 1801, 1891, 1933, 1999, 2017, 2047, 2113, 2177, 2251.
The formula can be generalized this way: Fermat pseudoprimes to base 2 of the form (n^m + m*n)/(m+1).
For m = 3, the formula becomes (n^3 + 3*n)/4, from which the Poulet numbers 341, 1729, 188461, 228241, and 1082809 (for n = 11, 19, 91, 97, and 163, respectively) were obtained.
Conjecture: For any m natural, m > 1, there exists a series with infinitely many Fermat pseudoprimes to base 2, P, formed this way: P = (n^m + m*n)/(m+1).

Crossrefs

Cf. A001567, A210454 (subsequence).

Programs

  • Mathematica
    t = Select[Table[n (n + 2)/3, {n, 4, 10000}], IntegerQ]; Select[t, PowerMod[2, # - 1, #] == 1 &] (* T. D. Noe, Sep 03 2012 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; forstep(n=31,sqrtint(3*lim+1)-1,[2,1], t=t=n*(n+2)/3; if(Mod(2,t)^t==2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017