cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A210454 Cipolla pseudoprimes to base 2: (4^p-1)/3 for any prime p greater than 3.

Original entry on oeis.org

341, 5461, 1398101, 22369621, 5726623061, 91625968981, 23456248059221, 96076792050570581, 1537228672809129301, 6296488643826193618261, 1611901092819505566274901, 25790417485112089060398421, 6602346876188694799461995861
Offset: 1

Views

Author

Bruno Berselli, Jan 21 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

This is the case a=2 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).
Named after the Italian mathematician Michele Cipolla (1880-1947). - Amiram Eldar, Jun 15 2021

Crossrefs

Programs

  • Haskell
    a210454 = (`div` 3) . (subtract 1) . (4 ^) . a000040 . (+ 2)
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Magma
    [(4^NthPrime(n)-1)/3: n in [3..15]];
    
  • Maple
    P:=proc(q)local n;
    for n from 3 to q do print((4^ithprime(n)-1)/3);
    od; end: P(100); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    (4^# - 1)/3 & /@ Prime[Range[3, 15]]
  • Maxima
    Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
    makelist((4^Prime(n)-1)/3, n, 3, 15);
    
  • PARI
    a(n)=4^prime(n+2)\3 \\ Charles R Greathouse IV, Jul 09 2015

A321868 Fermat pseudoprimes to base 2 that are octagonal.

Original entry on oeis.org

341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A000567.
The corresponding indices of the octagonal numbers are 11, 15, 29, 31, 37, 43, 53, 73, 93, 103, 151, 167, 233, 271, 307, 341, 421, 443, 467, 487, 491, 577, 593, 601, 631, 645, 667, 673, 683, 705, 727, 751, 761, 901, 911, 919, 991, ...
First differs from A216170 at n = 505.

Crossrefs

Programs

  • Mathematica
    oct[n_]:=n(3n-2); Select[oct[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 8) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018

A216276 Fermat pseudoprimes to base 2 of the form (p^2 + 2*p)/3, where p is also a Fermat pseudoprime to base 2.

Original entry on oeis.org

997633, 1398101, 2433601, 3581761, 26474581, 37354465, 63002501, 70006021, 82268033, 93030145, 561481921, 804978721, 1231726981, 2602378721, 2942952481, 12817618945, 15516020833, 16627811905, 22016333333, 25862624705, 53707855201, 67220090785, 95074073281, 144278347201
Offset: 1

Views

Author

Marius Coman, Sep 03 2012

Keywords

Comments

The corresponding values of the Fermat pseudoprime p: 1729, 2047, 3277, 8911, 10585, 13747, 14491, 15709, 16705, 41041, 49141, 60787, 88357, 196093, 215749, 223345, 256999, 278545, 401401, 449065, 657901.
Conjecture: For any Fermat pseudoprime to base 2, p1, there exist infinitely many Fermat pseudoprimes to base 2, of the form p2 = (p1^n + n*p1)/(n+1), where n > 1.
Conjecture: For any Carmichael number c there exist infinitely many Carmichael numbers of the form (c^n + n*c)/(n + 1) with n > 1.

Crossrefs

Programs

  • PARI
    is(n)=my(s); issquare(3*n+1,&s) && Mod(2,s-1)^(s-2)==1 && !isprime(s-1) && Mod(2,n)^n==2 && n>1 \\ Charles R Greathouse IV, Jul 07 2017
    
  • PARI
    forcomposite(p=1729,1e6, n=p*(p+2)/3; if(Mod(2,p)^p==2 && Mod(2,n)^n==2, print1(n", "))) \\ Charles R Greathouse IV, Jul 07 2017

Extensions

a(3) and a(15) inserted by Charles R Greathouse IV, Jul 07 2017
Showing 1-3 of 3 results.