cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A210461 Cipolla pseudoprimes to base 3: (9^p-1)/8 for any odd prime p.

Original entry on oeis.org

91, 7381, 597871, 3922632451, 317733228541, 2084647712458321, 168856464709124011, 1107867264956562636991, 588766087155780604365200461, 47690053059618228953581237351, 25344449488056571213320166359119221, 166284933091139163730593611482181209801
Offset: 1

Views

Author

Bruno Berselli, Jan 22 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

This is the case a=3 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).

Examples

			91 is in the sequence because 91=((3^3-1)/2)*((3^3+1)/4), even if p=3 divides 3*(3^2-1), and 3^90 = (91*8+1)^15 == 1 (mod 91).
7381 is in the sequence because 7381=((3^5-1)/2)*((3^5+1)/4) and 3^7380 = (7381*472400+1)^369 == 1 (mod 7381).
		

References

  • Michele Cipolla, Sui numeri composti P che verificano la congruenza di Fermat a^(P-1) = 1 (mod P), Annali di Matematica 9 (1904), p. 139-160.

Crossrefs

Programs

  • Haskell
    a210461 = (`div` 8) . (subtract 1) . (9 ^) . a065091
    -- Reinhard Zumkeller, Jan 22 2013
  • Magma
    [(9^NthPrime(n)-1)/8: n in [2..12]];
    
  • Maple
    P:=proc(q)local n;
    for n from 2 to q do print((9^ithprime(n)-1)/8);
    od; end: P(100); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    (9^# - 1)/8 & /@ Prime[Range[2, 12]]
  • Maxima
    Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
    makelist((9^Prime(n)-1)/8, n, 2, 12);
    

A216170 Fermat pseudoprimes to base 2 of the form (n^2 + 2*n)/3.

Original entry on oeis.org

341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
Offset: 1

Views

Author

Marius Coman, Sep 03 2012

Keywords

Comments

The corresponding values of n: 31, 43, 85, 91, 109, 127, 157, 217, 277, 307, 451, 499, 697, 811, 919, 1021, 1261, 1327, 1399, 1459, 1471, 1729, 1777, 1801, 1891, 1933, 1999, 2017, 2047, 2113, 2177, 2251.
The formula can be generalized this way: Fermat pseudoprimes to base 2 of the form (n^m + m*n)/(m+1).
For m = 3, the formula becomes (n^3 + 3*n)/4, from which the Poulet numbers 341, 1729, 188461, 228241, and 1082809 (for n = 11, 19, 91, 97, and 163, respectively) were obtained.
Conjecture: For any m natural, m > 1, there exists a series with infinitely many Fermat pseudoprimes to base 2, P, formed this way: P = (n^m + m*n)/(m+1).

Crossrefs

Cf. A001567, A210454 (subsequence).

Programs

  • Mathematica
    t = Select[Table[n (n + 2)/3, {n, 4, 10000}], IntegerQ]; Select[t, PowerMod[2, # - 1, #] == 1 &] (* T. D. Noe, Sep 03 2012 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; forstep(n=31,sqrtint(3*lim+1)-1,[2,1], t=t=n*(n+2)/3; if(Mod(2,t)^t==2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017

A293626 Numbers of the form (2^(2p) + 1)/5, where p is a prime > 5.

Original entry on oeis.org

3277, 838861, 13421773, 3435973837, 54975581389, 14073748835533, 57646075230342349, 922337203685477581, 3777893186295716170957, 967140655691703339764941, 15474250491067253436239053, 3961408125713216879677197517, 16225927682921336339157801028813
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Rotkiewicz proved that all the terms in this sequence are Fermat pseudoprimes to base 2 (A001567).

Examples

			3277 = (2^(2*7) + 1)/5 is the first term, corresponding to the prime p = 7.
		

Crossrefs

Programs

  • Mathematica
    p = Select[Range[7,60], PrimeQ]; (2^(2p) + 1)/5

A371757 Numbers of the form (4^(p^(k+1)) + 1)/(4^(p^k) + 1), where k >= 1 and p is an odd prime other than 5.

Original entry on oeis.org

4033, 68719214593, 19341632594266545643831297, 324518553658426708768757511094273, 1684996264962499703367587717863072443065045481313942556034056847361
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

MÄ…kowski and Rotkiewicz (1969) proved that all the terms are Fermat pseudoprimes to base 2 (A001567).
The next term has 94 digits and is too large to include in the data section.

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    f[p_, k_] := (4^(p^(k + 1)) + 1)/(4^(p^k) + 1);
    seq[max_] := Module[{s = {}, p = 3, f1, k, addFlag = True}, While[addFlag, If[p == 5, Continue[]]; k = 1; addFlag = False; While[(f1 = f[p, k]) < max, AppendTo[s, f1]; addFlag = True; k++]; p = NextPrime[p, If[p == 3, 2, 1]]]; Sort[s]]; seq[10^80]

A243292 Odd numbers n such that (4^n - 1)/3 is a base-2 pseudoprime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 02 2014

Keywords

Comments

Odd numbers not divisible by 3 that are primes or pseudoprimes to base 4.

Crossrefs

Programs

  • Magma
    [n: n in [1..271 by 2] | not n mod 3 eq 0 and IsOne(4^(n-1) mod n)];
Showing 1-5 of 5 results.