cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210454 Cipolla pseudoprimes to base 2: (4^p-1)/3 for any prime p greater than 3.

Original entry on oeis.org

341, 5461, 1398101, 22369621, 5726623061, 91625968981, 23456248059221, 96076792050570581, 1537228672809129301, 6296488643826193618261, 1611901092819505566274901, 25790417485112089060398421, 6602346876188694799461995861
Offset: 1

Views

Author

Bruno Berselli, Jan 21 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

This is the case a=2 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).
Named after the Italian mathematician Michele Cipolla (1880-1947). - Amiram Eldar, Jun 15 2021

Crossrefs

Programs

  • Haskell
    a210454 = (`div` 3) . (subtract 1) . (4 ^) . a000040 . (+ 2)
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Magma
    [(4^NthPrime(n)-1)/3: n in [3..15]];
    
  • Maple
    P:=proc(q)local n;
    for n from 3 to q do print((4^ithprime(n)-1)/3);
    od; end: P(100); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    (4^# - 1)/3 & /@ Prime[Range[3, 15]]
  • Maxima
    Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
    makelist((4^Prime(n)-1)/3, n, 3, 15);
    
  • PARI
    a(n)=4^prime(n+2)\3 \\ Charles R Greathouse IV, Jul 09 2015

A217841 Fermat pseudoprimes n to base 3 for which sqrt(8*n + 1) is an integer.

Original entry on oeis.org

91, 703, 1891, 2701, 7381, 8911, 10585, 12403, 16471, 18721, 29161, 38503, 41041, 49141, 79003, 88831, 93961, 104653, 115921, 146611, 188191, 218791, 226801, 269011, 286903, 314821, 334153, 364231, 385003, 497503, 534061, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1237951
Offset: 1

Views

Author

Marius Coman, Oct 12 2012

Keywords

Crossrefs

Cf. A005935, A210461 (subsequence).

Programs

  • PARI
    list(lim)=my(v=List(),n); lim\=1; forstep(k=27,sqrtint(8*lim+1),2, n=k^2>>3; if(Mod(3,n)^(n-1)==1, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017

Extensions

a(15)-a(18) and a(35) from Charles R Greathouse IV, Jun 30 2017

A217853 Fermat pseudoprimes to base 3 of the form (3^(4*k + 2) - 1)/8.

Original entry on oeis.org

91, 7381, 597871, 48427561, 3922632451, 317733228541, 25736391511831, 2084647712458321, 168856464709124011, 1107867264956562636991, 588766087155780604365200461, 47690053059618228953581237351, 25344449488056571213320166359119221, 166284933091139163730593611482181209801
Offset: 1

Views

Author

Marius Coman, Oct 12 2012

Keywords

Comments

These numbers were obtained for values of k from 1 to 20, with the following exceptions: k = 10, 12, 13, 16, 17, 19, for which were obtained 3^n mod n = 3^7, 3^31, 3^37, 3^25, 3^31, 3^13.
Conjecture: There are infinitely many Fermat pseudoprimes to base 3 of the form (3^(4*k + 2) - 1)/8, where k is a natural number.
It is true: for example, when 2k+1 is a prime number (see A210461). - Bruno Berselli, Jan 22 2013

Crossrefs

Cf. A005935, A210461 (subsequence), A217841.

Programs

  • Mathematica
    Select[Table[(3^(4k + 2) - 1)/8, {k, 80}], PowerMod[3, # - 1, #] == 1 &] (* Alonso del Arte, May 14 2019 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(k=1,(logint(8*lim+1,3)-2)\4, t=3^(4*k + 2)>>3; if(Mod(3,t)^t==3, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017

A343009 a(n) = (n^(2n)-1)/(n^2-1) for n > 1, a(1) = 1.

Original entry on oeis.org

1, 5, 91, 4369, 406901, 62193781, 14129647351, 4467856773185, 1876182941212489, 1010101010101010101, 678356244890331342611, 555922008415320588345745, 546031727340884622966664381, 633213824057681722185793753109, 856031514432518244055765015738351
Offset: 1

Views

Author

Thomas Ordowski, Apr 02 2021

Keywords

Comments

Conjecture: for n > 2, a(n) is a Fermat pseudoprime to base n.
If p is an odd prime, then a(p) is a Cipolla pseudoprime to base p.
Is a(m) a Fermat pseudoprime to base m for every composite m?
Amiram Eldar confirmed this up to m = 3800.
From Jianing Song, Aug 28 2022: (Start)
a(n) = Product_{d|(2n),d>2} Phi(d,n), where Phi(n,x) is the d-th cyclotomic polynomial. Note that Phi(n,x) > 1 for x >= 2 unless (n,x) = (1,2): suppose that n >= 3 and x >= 2, then Phi(n,x) = Product_{1<=j<=n,gcd(j,n)=1} (x - exp(2*j*Pi*i/n)) = Product_{1<=j<=n/2,gcd(j,n)=1} (x^2 - 2*cos(2*j*Pi/n)*x + 1) = Product_{1<=j<=n/2,gcd(j,n)=1} ((x - cos(2*j*Pi/n))^2 + (sin(2*j*Pi/n))^2) > 1 since x - cos(2*j*Pi/n) > 1. This shows that a(n) is composite for n > 2.
For n > 2, a(n) is a Fermat pseudoprime to base n, since n^(2*n) == 1 (mod a(n)) and 2*n divides a(n)-1 = n^2*(n^(2*n-2)-1)/(n^2-1): if n is even, then 2*n | n^2; if n is odd, then n | n^2 and 2 | n^2+1 = (n^4-1)/(n^2-1) | (n^(2*n-2)-1)/(n^2-1). (End)

Examples

			a(10) = (10^20-1)/99 = 1010101010101010101.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n^(2*n)-1)/(n^2-1); a[1] = 1; Array[a, 15] (* Amiram Eldar, Apr 02 2021 *)

Formula

a(n) = Sum_{k=0..n-1} n^(2*k). - Davide Rotondo, Aug 28 2022
From Alois P. Heinz, Aug 28 2022: (Start)
a(n) = A117812(n)/A005563(n-1) = A117812(n)/A132411(n-1) for n>=2.
Limit_{n -> 1} (n^(2*n)-1)/(n^2-1) = 1. (End).

Extensions

More terms from Amiram Eldar, Apr 02 2021
a(1)=1 prepended and name adapted by Alois P. Heinz, Aug 28 2022
Showing 1-4 of 4 results.