A216224 Natural growth of an aliquot sequence driven by a perfect number 2^(p-1)*((2^p)-1), but starting at 27.
27, 53, 55, 89, 91, 133, 187, 245, 439, 441, 1041, 1743, 3633, 7503, 13329, 25203, 44429, 66547, 76813, 90803, 90805, 167243, 187957, 280907, 332005, 499739, 499741, 600995, 841405, 1177979, 1392181, 1977419, 1992661, 2398187, 3062293, 3600363, 6739253, 7507147
Offset: 1
Keywords
Links
- H. J. J. te Riele, A note on the Catalan-Dickson conjecture, Math. Comp. 27 (1973), 189-192.
Programs
-
PARI
lista(p=521, nb) = {perf = 2^(p-1)*(2^p-1); a = 27*perf; print1(a/perf, ", "); for (i=1, nb, a = sigma(a) - a; print1(a/perf, ", "); if (gcd(a/perf, p) != 1, return()););} \\ Michel Marcus, Mar 13 2013
Comments