cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068913 Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than -n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 4, 4, 2, 1, 0, 4, 6, 4, 2, 1, 0, 8, 12, 8, 4, 2, 1, 0, 8, 18, 14, 8, 4, 2, 1, 0, 16, 36, 28, 16, 8, 4, 2, 1, 0, 16, 54, 48, 30, 16, 8, 4, 2, 1, 0, 32, 108, 96, 60, 32, 16, 8, 4, 2, 1, 0, 32, 162, 164, 110, 62, 32, 16, 8, 4, 2, 1, 0, 64, 324, 328, 220, 124, 64, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Examples

			Rows start:
  1,  0,  0,  0,  0, ...
  1,  2,  2,  4,  4, ...
  1,  2,  4,  6, 12, ...
  1,  2,  4,  8, 14, ...
  ...
		

Crossrefs

Cf. early rows: A000007, A016116 (without initial term), A068911, A068912, A216212, A216241, A235701.
Central and lower diagonals are A000079, higher diagonals include A000918, A028399.

Programs

  • Mathematica
    T[n_,0]=1; T[n_,k_]:=2^k/(n+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (n+1))]^k Cot[(Pi (1-2r))/(4 (n+1))],{r,1,n+1}]; Table[T[r,n-r],{n,0,20},{r,0,n}]//Round//Flatten (* Herbert Kociemba, Sep 23 2020 *)

Formula

Starting with T(n, 0) = 1, if (k-n) is negative or even then T(n, k) = 2*T(n, k-1), otherwise T(n, k) = 2*T(n, k-1) - A061897(n+1, (k-n-1)/2). So for n>=k, T(n, k) = 2^k. [Corrected by Sean A. Irvine, Mar 23 2024]
T(n,0) = 1, T(n,k) = (2^k/(n+1))*Sum_{r=1..n+1} (-1)^r*cos((Pi*(2*r-1))/(2*(n+1)))^k*cot((Pi*(1-2*r))/(4*(n+1))). - Herbert Kociemba, Sep 23 2020

A214846 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 6 or if k-n >= 6, T(k,0) = T(0,k) = 1 if 0 <= k <= 5, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 0, 0, 6, 21, 35, 35, 21, 6, 0, 0, 0, 27, 56, 70, 56, 27, 0, 0, 0, 0, 27, 83, 126, 126, 83, 27, 0, 0, 0, 0, 0, 110, 209, 252, 209, 110, 0, 0, 0, 0, 0, 0, 110, 319, 461, 461, 319, 110, 0, 0, 0, 0, 0, 0, 0, 429, 780, 922, 780, 429, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

An arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1,  1,   1,   1,   1,    0,    0,    0,     0,     0, ...
  1, 2,  3,   4,   5,   6,    6,    0,    0,     0,     0, ...
  1, 3,  6,  10,  15,  21,   27,   27,    0,     0,     0, ...
  1, 4, 10,  20,  35,  56,   83,  110,  110,     0,     0, ...
  1, 5, 15,  35,  70, 126,  209,  319,  429,   429,     0, ...
  1, 6, 21,  56, 126, 252,  461,  780, 1209,  1638,  1638, ...
  0, 6, 27,  83, 209, 461,  922, 1702, 2911,  4549,  6187, ...
  0, 0, 27, 110, 319, 780, 1702, 3404, 6315, 10864, 17051, ...
  ...
		

Crossrefs

Cf. similar sequences: A000007, A216218, A216216, A216210, A216219.

Formula

T(n,n) = A087944(n).
T(n,n+1) = T(n+1,n) = A087946(n).
T(n+2,n) = T(n,n+2) = A001353(n+1).
T(n+3,n) = T(n,n+3) = A216271(n).
T(n+5,n) = T(n+4,n) = T(n,n+4) = T(n,n+5) = A216263(n).
Sum_{k=0..n} T(n-k,k) = A216241(n).

A235701 Number of n step walks (each step +/- 1 starting from 0) which are never more than 6 or less than -6.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 252, 490, 980, 1890, 3780, 7252, 14504, 27734, 55468, 105840, 211680, 403368, 806736, 1535954, 3071908, 5845406, 11690812, 22238062, 44476124, 84582428, 169164856, 321661970, 643323940, 1223146232, 2446292464, 4650833040
Offset: 0

Views

Author

Geoffrey Critzer, Jan 14 2014

Keywords

Crossrefs

Row n=6 of A068913.

Programs

  • Mathematica
    nn=30;r=Solve[{s==1 + x a + x b, a==x s + x c, b==x s +x d, c==x a +x e, d==x b + x f, e==x c+x g, f==x d+x h,g==x e+x i, h==x f+x j,i==x g+x k,j==x h+x l,k==x i,l==x j, z==x k + x l }, {s,a,b,c,d,e,f,g,h,i,j,k,l,z}]; CoefficientList[Series[s+a+b+c+d+e+f+g+h+i+j+k+l/.r,{x,0,nn}],x]

Formula

G.f.: (1 + x - 2*x^2 - x^3)^2/(1 - 7*x^2 + 14*x^4 - 7*x^6).
Showing 1-3 of 3 results.