A216270 Numbers n such that n+(n+1), n^2+(n+1)^2, n+(n+1)^2, n^2+(n+1) are all prime.
1, 2, 5, 14, 69, 99, 495, 1364, 1365, 2010, 2735, 3099, 3914, 4359, 4389, 5984, 6669, 8435, 9164, 10794, 12075, 15224, 15315, 16014, 16470, 17900, 20214, 20769, 21204, 23450, 24240, 26430, 26690, 27300, 29099, 35189, 38415, 38745, 42944, 47054, 48789, 50295
Offset: 1
Keywords
Examples
n=14: 29│ │421 n+(n+1)=14+(14+1)=29 14---196 n^2+(n+1)^2=196+225=421 │ X │ n+(n+1)^2=14+225=239 15---225 *15+225+1=241 n^2+(n+1)=196+15=211 211/ \239 . n=5: 11│ │61 n+(n+1)=5+(5+1)=11 5---25 n^2+(n+1)^2=25+36=61 │ X │ n+(n+1)^2=5+36=41 6---36 *6+36+1=43 n^2+(n+1)=25+6=31 31/ \41 . n=495: 991│ │491041 n+(n+1)=495+496=991 495---245025 n^2+(n+1)^2=491041 │ X │ n+(n+1)^2=246511 496---246016 n^2+(n+1)=245521 245521/ \246511 . They form the group: o 1 2 3 (i) 1 0 3 2 2 3 1 0 3 2 0 1 . For example, for n=99: 99 9801 0 1 2 3 (i) 100 10000 9801 99 1 0 3 2 10000 100 10000 100 99 9801 2 3 1 0 100 10000 3 2 0 1 9801 99 The sum of each column and the sum of each diagonal is a prime number.
References
- Joong Fang, Abstract Algebra, Schaum, 1963, Page 76.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[51000],AllTrue[{#+(#+1),#^2+(#+1)^2,#+(#+1)^2, #^2+#+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 21 2017 *)
-
PARI
is(n) = { isprime(n+(n+1)) & isprime(n^2+(n+1)^2) & isprime(n+(n+1)^2) & isprime(n^2+(n+1)); } for(n=1,10^6, if (is(n), print1(n,", "))); /* Joerg Arndt, Mar 26 2013 */