cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216282 Number of nonnegative solutions to the equation x^2 + 2*y^2 = n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 3, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 1, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Comments

Records occur at 1, 9, 81, 297, 891, 1683, 5049, 15147, 31977, ... - Antti Karttunen, Aug 23 2017

Examples

			For n = 9, there are two solutions: 9 = 9^2 + 2*(0^2) = 1^2 + 2*(2^2), thus a(9) = 2.
For n = 81, there are three solutions: 81 = 9^2 + 2*(0^2) = 3^2 + 2*(6^2) = 7^2 + 2*(4^2), thus a(81) = 3.
For n = 65536, there is one solution: 65536 = 256^2 + 2*(0^2) = 65536 + 0, thus a(65536) = 1.
For n = 65537, there is one solution: 65537 = 255^2 + 2*(16^2) = 65205 + 512, thus a(65537) = 1.
		

Crossrefs

Cf. A002479 (positions of nonzeros), A097700 (of zeros).

Programs

  • Mathematica
    r[n_] := Reduce[x >= 0 && y >= 0 && x^2 + 2 y^2 == n, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === And, 1, Head[rn] === Or, Length[rn], True, -1];
    Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 24 2017 *)
  • Scheme
    (define (A216282 n) (cond ((< n 2) 1) (else (let loop ((k (- (A000196 n) (modulo (- n (A000196 n)) 2))) (s 0)) (if (< k 0) s (let ((x (/ (- n (* k k)) 2))) (loop (- k 2) (+ s (A010052 x))))))))) ;; Antti Karttunen, Aug 23 2017

Extensions

Examples from Antti Karttunen, Aug 23 2017

A374288 a(n) is the smallest nonnegative integer k where there are exactly n nonnegative integer solutions to x^2 + 5*y^2 = k.

Original entry on oeis.org

2, 0, 9, 81, 189, 441, 1449, 10206, 3969, 12789, 13041, 35721, 30429, 194481, 117369, 115101, 186921, 2893401, 273861
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Comments

For n > 1, a(n) is the smallest nonnegative k such that A216283(k) = n.
a(20) = 378189.
a(21) = 1035909.
a(22) = 9506889.
a(23) = 2099601.
a(24) = 882441.
a(25) = 5639949.
a(26) = 85562001.
a(27) = 6765381.
a(28) = 3403701.
a(30) = 3925341.
a(32) = 5420709.
a(33) = 83908629.
a(35) = 50759541.
a(36) = 7941969.
a(38) = 102880449.
a(40) = 15505749.
a(41) = 170067681.
a(42) = 35328069.

Crossrefs

Programs

  • PARI
    b(n, k) = sum(i=0, sqrtint(n), sum(j=0, sqrtint(n\k), i^2+k*j^2==n));
    a(n, k=5) = my(cnt=0); while(b(cnt, k)!=n, cnt++); cnt;
Showing 1-2 of 2 results.