cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216294 Triangular array read by rows: T(n,k) is the number of partial permutations of {1,2,...,n} that have exactly k cycles, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 13, 14, 6, 1, 73, 84, 41, 10, 1, 501, 609, 325, 95, 15, 1, 4051, 5155, 2944, 965, 190, 21, 1, 37633, 49790, 30023, 10689, 2415, 343, 28, 1, 394353, 539616, 340402, 129220, 32179, 5348, 574, 36, 1, 4596553, 6478521, 4246842, 1698374, 455511, 84567, 10794, 906, 45, 1
Offset: 0

Views

Author

Geoffrey Critzer, Sep 04 2012

Keywords

Comments

A partial permutation on a set X is a bijection between two subsets of X.
Row sums are A002720.
First column (corresponding to k=0) is A000262.

Examples

			1;
1,     1;
3,     3,   1;
13,   14,   6,  1;
73,   84,  41, 10,  1;
501, 609, 325, 95, 15,  1;
		

Crossrefs

Programs

  • Maple
    gf := exp(x / (1 - x)) / (1 - x)^y:
    serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
    seq(print(seq(n!*coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 23 2023
  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)]/(1-x)^y,{x,0,nn}],{x,y}]]//Flatten

Formula

E.g.f.: exp(x/(1-x))/(1-x)^y.
From Peter Bala, Aug 23 2013: (Start)
Exponential Riordan array [exp(x/(1-x)), log(1/(1-x))].
The row polynomials R(n,y), n > = 0, satisfy the 2nd order recurrence equation R(n,y) = (2*n + y - 1)*R(n-1,y) - (n - 1)*(n + y - 2)*R(n-2,y) with R(0,y) = 1 and R(1,y) = 1 + y.
Modulo variations in offset we have: R(n,0) = A000262, R(n,1) = A002720, R(n,2) = A000262, R(n,3) = A052852, R(n,4) = A062147, R(n,5) = A062266 and R(n,6) = A062192. In general, for fixed k, the sequence {R(n,k)}n>=1 gives the entries on a diagonal of the square array A088699. (End)