A216300 Numbers k such that 10k+3 is composite but 10k+1, 10k+7, 10k+9 are all prime.
13, 160, 376, 391, 421, 547, 586, 712, 745, 748, 754, 808, 883, 985, 1006, 1210, 1291, 1333, 1375, 1462, 1513, 1588, 1702, 1798, 2203, 2269, 2302, 2353, 2497, 2584, 2854, 2920, 3205, 3358, 3436, 3583, 3823, 3832, 3856, 3982, 4003, 4084, 4138, 4339, 4402
Offset: 1
Keywords
Links
- V. Raman, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[ps == {10*n + 1, 10*n + 7, 10*n + 9}, AppendTo[t, n]], {n, 0, 4738}]; t (* T. D. Noe, Sep 03 2012 *) Select[Range[5000],Boole[PrimeQ[10 #+{1,3,7,9}]]=={1,0,1,1}&] (* Harvey P. Dale, Jan 29 2025 *)
Formula
a(n) >> n log^3 n. - Charles R Greathouse IV, Sep 07 2012