A216301 Numbers k such that 10k+7 is composite but 10k+1, 10k+3, 10k+9 are all prime.
7, 43, 103, 106, 145, 238, 271, 409, 472, 544, 574, 670, 721, 904, 934, 1009, 1183, 1204, 1261, 1282, 1372, 1636, 1669, 1729, 1792, 1921, 1975, 2002, 2149, 2152, 2254, 2320, 2437, 2560, 2593, 2611, 2695, 2779, 2857, 2866, 2875, 3085, 3115, 3118, 3256
Offset: 1
Keywords
Links
- V. Raman, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[ps == {10*n + 1, 10*n + 3, 10*n + 9}, AppendTo[t, n]], {n, 0, 4999}]; t (* T. D. Noe, Sep 03 2012 *) cprQ[n_]:=Module[{c=10n},!PrimeQ[c+7]&&And@@PrimeQ[c+{1,3,9}]]; Select[ Range[ 4000],cprQ] (* Harvey P. Dale, May 28 2014 *) Select[Range[4000],Boole[PrimeQ[10 #+{1,3,7,9}]]=={1,1,0,1}&] (* Harvey P. Dale, Dec 09 2022 *)
Formula
a(n) >> n log^3 n. - Charles R Greathouse IV, Sep 07 2012