cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216318 Number of peaks in all Dyck n-paths after changing each valley to a peak by the transform DU -> UD.

Original entry on oeis.org

0, 1, 2, 8, 31, 119, 456, 1749, 6721, 25883, 99892, 386308, 1496782, 5809478, 22584160, 87922215, 342741285, 1337698515, 5226732060, 20442936360, 80031775890, 313585934610, 1229695855440, 4825705232010, 18950613058026, 74467158658974, 292797216620776, 1151895428382104
Offset: 0

Views

Author

David Scambler, Sep 03 2012

Keywords

Examples

			The 5 Dyck 3-paths after changing DU to UD become two copies of UUUDDD with one peak each and three copies of UUDUDD with two peaks each giving a(3)=8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(16*x*(1+Sqrt[1-4*x]+(5+3*Sqrt[1-4*x]-2*x)*(-1+x) x))/((1+Sqrt[1-4*x])^5*Sqrt[1-4*x]),{x,0,27}],x]
  • Maxima
    a(n):=if n<2 then n else binomial(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)); /* Vladimir Kruchinin, Oct 30 2020 */
  • PARI
    x='x+O('x^50); concat([0], Vec((16*x*(1+sqrt(1-4*x)-(5+3*sqrt(1-4*x)-2*x)*(1-x)*x)) / ((1+sqrt(1-4*x))^5*sqrt(1-4*x)))) \\ G. C. Greubel, Apr 01 2017
    

Formula

a(0)=0, a(1)=1, a(n>=2) = A001700(n-1) - Sum_{k=0..n-3} A001700(k) + Sum_{k=0..n-2} A003516(k) - 1.
G.f.: (16*x*(1+sqrt(1-4*x)+(5+3*sqrt(1-4*x)-2*x) * (-1+x)*x)) / ((1+sqrt(1-4*x))^5 * sqrt(1-4*x)).
a(n) ~ 5*2^(2*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
a(n) = C(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Oct 30 2020