A216319 Irregular triangle: row n lists the odd numbers of the reduced residue system modulo n.
1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 5, 1, 3, 5, 7, 1, 5, 7, 1, 3, 7, 9, 1, 3, 5, 7, 9, 1, 5, 7, 11, 1, 3, 5, 7, 9, 11, 1, 3, 5, 9, 11, 13, 1, 7, 11, 13, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 1, 5, 7, 11, 13, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 7, 9, 11, 13, 17, 19
Offset: 1
Examples
The array starts: n\k 1 2 3 4 5 6 7 8 9... --------------------------------------- 1 1 2 1 3 1 4 1 3 5 1 3 6 1 5 7 1 3 5 8 1 3 5 7 9 1 5 7 10 1 3 7 9 11 1 3 5 7 9 12 1 5 7 11 13 1 3 5 7 9 11 14 1 3 5 9 11 13 15 1 7 11 13 16 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 18 1 5 7 11 13 17 19 1 3 5 7 9 11 13 15 17 20 1 3 7 9 11 13 17 19 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11703 (rows 1 <= n <= 240, flattened)
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Crossrefs
Cf. A038566 (row n lists all numbers in the reduced residue system modulo n).
Programs
-
Mathematica
Table[Select[Range[1, n, 2], GCD[#, n] == 1 &], {n, 20}] (* Michael De Vlieger, Oct 15 2020 *)
-
PARI
row(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); \\ Michel Marcus, Jun 10 2020
Formula
a(n, k) is the k-th odd member of the smallest nonnegative reduced residue system modulo n. See the comment above.
Comments