cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216359 G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x/A(x)).

Original entry on oeis.org

1, 2, 3, 13, 32, 147, 445, 2067, 7019, 32590, 119209, 551551, 2125429, 9795863, 39221165, 180177403, 742575760, 3403131833, 14342166121, 65626369612, 281459129188, 1286834885967, 5596229192396, 25580269950635, 112492633046446, 514323765191879, 2282371511598955
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.209619875959405379599013693... with A(r) = 2.36951367232829409921688546894691317519410... where y=A(r) satisfies y^7 - 2*y^6 - 4*y^4 + 4*y^3 + 4*y - 2 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + 445*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 10*x^2 + 38*x^3 + 125*x^4 + 500*x^5 + 1839*x^6 +...
A(x)^3 = 1 + 6*x + 21*x^2 + 83*x^3 + 315*x^4 + 1269*x^5 + 5061*x^6 +...
where A(x) = (1-x^2)*A(x)^2 - x*A(x)^3 - x.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 1/A(x)^3)*x*A(x) + (1 + 2^2/A(x)^3 + 1/A(x)^6)*x^2*A(x)^2/2 +
(1 + 3^2/A(x)^3 + 3^2/A(x)^6 + 1/A(x)^9)*x^3*A(x)^3/3 +
(1 + 4^2/A(x)^3 + 6^2/A(x)^6 + 4^2/A(x)^9 + 1/A(x)^12)*x^4*A(x)^4/4 +
(1 + 5^2/A(x)^3 + 10^2/A(x)^6 + 10^2/A(x)^9 + 5^2/A(x)^12 + 1/A(x)^15)*x^5*A(x)^5/5 +...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(x+y+x^2*y^2-y^2+x*y^3, y, 1), x, 41):
    seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1-x^2)*AGF^2 - x*AGF^3 - x - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^2)*(1 + x/(A+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(3*j))*x^m*A^m/m))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f. satisfies:
A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 / A(x)^(3*k) ).
The formal inverse of the g.f. A(x) is (sqrt(1 - 2*x^3 + 4*x^4 + x^6) - (1+x^3))/(2*x^2).
Recurrence: n*(n+1)*(1241*n^5 - 21306*n^4 + 135203*n^3 - 381522*n^2 + 435524*n - 104880)*a(n) = 6*n*(1201*n^4 - 19476*n^3 + 114613*n^2 - 287442*n + 255364)*a(n-1) + 2*(12410*n^7 - 237880*n^6 + 1771109*n^5 - 6388366*n^4 + 11032829*n^3 - 6363274*n^2 - 3856020*n + 4157712)*a(n-2) + 6*(2482*n^7 - 51299*n^6 + 419427*n^5 - 1705769*n^4 + 3477465*n^3 - 2797370*n^2 - 637684*n + 1410288)*a(n-3) + 2*(4964*n^7 - 110044*n^6 + 983093*n^5 - 4442260*n^4 + 10160177*n^3 - 8790970*n^2 - 4722180*n + 9233280)*a(n-4) - 6*(2482*n^7 - 58745*n^6 + 553921*n^5 - 2617109*n^4 + 6255337*n^3 - 6022682*n^2 - 1392300*n + 4289616)*a(n-5) + 60*(n-7)*(2*n - 11)*(n^3 - 40*n^2 + 280*n - 552)*a(n-6) + 2*(n-8)*(2*n - 13)*(1241*n^5 - 15101*n^4 + 62389*n^3 - 91339*n^2 - 930*n + 64260)*a(n-7). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 4.77053998540509708... is the root of the equation -4 + 12*d^2 - 8*d^3 - 12*d^4 - 20*d^5 + d^7 = 0 and c = 1.27852844884923435863262213680985089152... - Vaclav Kotesovec, Sep 18 2013
In closed form, c = (-4 + (1 + sqrt(1+8/d^2))*d^2) * sqrt((d^3*(1 + sqrt(1+8/d^2) + (4*(4 + d^2*(-3-sqrt(1+8/d^2) + d*(4+d))))/d^6)) / (1 + 1/64*(1 + sqrt(1+8/d^2)-4/d^2)^3*d^3)) / (32*d). - Vaclav Kotesovec, Aug 18 2014
From Peter Bala, Sep 10 2024: (Start)
For n not of the form 3*m + 1, we conjecture that a(n) = Sum_{k = 0..n} binomial(-n+3*k+1, k)*binomial(-n+3*k+1, n-k)/(-n+3*k+1).
Define a sequence operator R: {u(n): n >= 0} -> {v(n): n >= 0} by Sum_{n >= 0} v(n)*x^n = (1/x) * series_reversion(x/Sum_{n >= 0} u(n)*x^n). Then R({a(n)}) = A364336, R^2({a(n)}) = A215623 and R^3({a(n)}) = A364331. Cf. A073157. (End)