A216371 Odd primes with one coach: primes p such that A135303((p-1)/2) = 1.
3, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 317, 347, 349, 359, 367, 373, 379, 383, 389, 419, 421, 443, 461, 463, 467, 479, 487
Offset: 1
Examples
Prime 23 has a k value of 11 = (23 - 1)/2 (Cf. A003558(11)). It follows that 23 has only one coach (A135303(11) = 1). 23 is thus in the set. On the other hand 31 is not in the set since A135303(15) shows 3 coaches, with A003558(15) = 5. 13 is in the set since A135303(6) = 1; but 17 isn't since A135303(8) = 2.
References
- P. Hilton and J. Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, 2010, Cambridge University Press, pages 260-264.
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
- Marcelo E. Coniglio, Francesc Esteva, Tommaso Flaminio, and Lluis Godo, On the expressive power of Lukasiewicz's square operator, arXiv:2103.07548 [math.LO], 2021.
Crossrefs
Programs
-
Maple
isA216371 := proc(n) if isprime(n) then if A135303((n-1)/2) = 1 then true; else false; end if; else false; end if; end proc: A216371 := proc(n) local p; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while true do if isA216371(p) then return p; end if; p := nextprime(p) ; end do: end if; end proc: seq(A216371(n),n=1..40) ; # R. J. Mathar, Dec 01 2014
-
Mathematica
Suborder[a_, n_] := If[n > 1 && GCD[a, n] == 1, Min[MultiplicativeOrder[a, n, {-1, 1}]], 0]; nn = 150; Select[Prime[Range[2, nn]], EulerPhi[#]/(2*Suborder[2, #]) == 1 &] (* T. D. Noe, Sep 18 2012 *) f[p_] := Sum[Cos[2^n Pi/((2 p + 1))], {n, p}]; 1 + 2 * Select[Range[500], Reduce[f[#] == -1/2, Rationals] &]; (* Gerry Martens, May 01 2016 *)
-
PARI
is(p)=for(m=1,p\2-1, if(abs(centerlift(Mod(2,p)^m))==1, return(0))); p>2 && isprime(p) \\ Charles R Greathouse IV, Sep 18 2012
-
PARI
is(p) = isprime(p) && (p>2) && znorder(Mod(4,p)) == (p-1)/2 \\ Jianing Song, Dec 24 2022
Formula
a(n) = 2*A054639(n) + 1. - L. Edson Jeffery, Dec 18 2012
Comments