cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216419 Odd powers that are not prime powers.

Original entry on oeis.org

225, 441, 1089, 1225, 1521, 2025, 2601, 3025, 3249, 3375, 3969, 4225, 4761, 5625, 5929, 7225, 7569, 8281, 8649, 9025, 9261, 9801, 11025, 12321, 13225, 13689, 14161, 15129, 16641, 17689, 18225, 19881, 20449, 21025, 21609, 23409, 24025, 25281, 25921, 27225
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 06 2012

Keywords

Comments

Numbers in A075109 but not in A000961.
Also odd perfect powers having no primitive root (intersection of A075109 and A175594).

Examples

			81 = 9^2 as well as 81 = 3^4, therefore 81 is not a term.
225 can be expressed so in one way as (3*5)^2, therefore 225 is a term.
		

Crossrefs

Programs

  • Magma
    [n : n in [3..27225 by 2] | IsPower(n) and EulerPhi(n) ne CarmichaelLambda(n)]; // Arkadiusz Wesolowski, Nov 09 2013
  • Mathematica
    nn = 27500; lst = Union[Flatten[Table[n^i, {i, Prime[Range[PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]]; Select[lst, OddQ[#] && ! IntegerQ@PrimitiveRoot[#] &] (* Most of the code is from T. D. Noe *)

Formula

Sum_{n>=1} 1/a(n) = 1/2 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) - Sum_{p prime} 1/(p*(p-1)) = 0.0158808884... - Amiram Eldar, Dec 21 2020