cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216435 Number of Dyck n-paths with equally spaced returns.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 48, 133, 456, 1439, 5060, 16797, 60693, 208013, 760326, 2677217, 9879513, 35357671, 131763844, 477638701, 1790943777, 6566420517, 24748372638, 91482563641, 346597488614, 1289904685149, 4905215393598, 18370277279665, 70085754999907, 263747951750361
Offset: 0

Views

Author

David Scambler, Sep 10 2012

Keywords

Examples

			The 3 Dyck 3-paths are UUUDDD*, UUDUDD* and UD*UD*UD* where * marks the returns; the paths UD*UUDD* and UUDD*UD* do not have equally spaced returns.
		

Crossrefs

Cf. A000108.

Programs

  • Maple
    with(numtheory):
    a:= n->`if`(n=0, 1, add((binomial(2*d-2, d-1)/d)^(n/d), d=divisors(n))):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2012
  • Mathematica
    a={1};For[n=1,n<=29,++n, t=0; d=Divisors[n];For[i=1, i<=Length[d],++i, t+= (Binomial[2*d[[i]]-2,d[[i]]-1]/d[[i]])^(n/d[[i]])];a=Append[a,t];];a
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    a(n)=if(n==0, 1, sumdiv(n,d, C(d-1)^(n/d) ) );
    /* Joerg Arndt, Sep 30 2012 */

Formula

a(0)=1, a(n) = Sum_{d|n} (binomial(2*d-2, d-1)/d)^(n/d) = Sum_{d|n} A000108(d-1)^(n/d) for n>=1.