A216435 Number of Dyck n-paths with equally spaced returns.
1, 1, 2, 3, 7, 15, 48, 133, 456, 1439, 5060, 16797, 60693, 208013, 760326, 2677217, 9879513, 35357671, 131763844, 477638701, 1790943777, 6566420517, 24748372638, 91482563641, 346597488614, 1289904685149, 4905215393598, 18370277279665, 70085754999907, 263747951750361
Offset: 0
Keywords
Examples
The 3 Dyck 3-paths are UUUDDD*, UUDUDD* and UD*UD*UD* where * marks the returns; the paths UD*UUDD* and UUDD*UD* do not have equally spaced returns.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A000108.
Programs
-
Maple
with(numtheory): a:= n->`if`(n=0, 1, add((binomial(2*d-2, d-1)/d)^(n/d), d=divisors(n))): seq(a(n), n=0..40); # Alois P. Heinz, Sep 10 2012
-
Mathematica
a={1};For[n=1,n<=29,++n, t=0; d=Divisors[n];For[i=1, i<=Length[d],++i, t+= (Binomial[2*d[[i]]-2,d[[i]]-1]/d[[i]])^(n/d[[i]])];a=Append[a,t];];a
-
PARI
C(n)=binomial(2*n,n)/(n+1); a(n)=if(n==0, 1, sumdiv(n,d, C(d-1)^(n/d) ) ); /* Joerg Arndt, Sep 30 2012 */
Formula
a(0)=1, a(n) = Sum_{d|n} (binomial(2*d-2, d-1)/d)^(n/d) = Sum_{d|n} A000108(d-1)^(n/d) for n>=1.