cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216494 G.f. satisfies A(x) = 1 + x*A(x)^3/(1 - x^4*A(x)^10).

Original entry on oeis.org

1, 1, 3, 12, 55, 274, 1444, 7923, 44803, 259326, 1529034, 9151733, 55459124, 339595673, 2097962269, 13060078469, 81842038111, 515867610612, 3268440469234, 20803681980270, 132963257157430, 852981624781996, 5490522454007139, 35450567948693263, 229537971398979212, 1490074420399924169, 9696064337840077823
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 274*x^5 + 1444*x^6 + 7923*x^7 +...
such that
A(x) = 1 + x*A(x)^3 + x^5*A(x)^13 + x^9*A(x)^23 + x^13*A(x)^33 + x^17*A(x)^43 +...
Given (1) A(x) = 1 + x*A(x)^3 / (1 - x^4*A(x)^10),
suppose (2) A(x) = 1/A(-x*A(x)^5),
then substituting x in (1) with -x*A(x)^5 yields:
1/A(x) = 1 - x*A(x)^5/A(x)^3 / (1 - x^4*A(x)^20/A(x)^10),
which illustrates that (2) is consistent with (1).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3/(1 - x^4*A^10 +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1/A(-x*A(x)^5); note that the g.f. of A001764, G(x) = 1 + x*G(x)^3, also satisfies this condition.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(3*n-2*k+1,n-4*k)/(3*n-2*k+1). - Seiichi Manyama, Aug 28 2023