A216497 Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...4, are four primes.
29, 53, 127, 131, 157, 173, 197, 227, 251, 257, 271, 283, 293, 311, 353, 373, 389, 397, 421, 443, 449, 463, 479, 509, 521, 587, 607, 613, 617, 661, 673, 677, 691, 719, 757, 761, 811, 821, 823, 839, 853, 859, 863, 881, 887, 907, 911, 941, 953, 967, 983, 997, 1013
Offset: 1
Keywords
Examples
29 is in the sequence because with d=6: 23, 17, 11, 5 are all primes.
Programs
-
Mathematica
prms = 4; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[1013]]], fQ] (* T. D. Noe, Sep 08 2012 *)
-
PARI
is(n)=my(t); forprime(p=2,n-12,if((n-p)%4==0 && isprime((t=(n-p)/4)+p) && isprime(2*t+p) && isprime(3*t+p) && isprime(n), return(1))); 0 \\ Charles R Greathouse IV, Sep 10 2014
Comments