cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216508 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 6, 13, 39, 130, 455, 1638.

Original entry on oeis.org

6, 13, 39, 130, 455, 1638, 6006, 22308, 83655, 316030, 1200914, 4585308, 17577014, 67603887, 260757536, 1008258225, 3906958055, 15167837542, 58983478554, 229708325847, 895760071050, 3497141791455, 13667427167576, 53464307173927, 209315686335366, 820090746381088, 3215215287887889
Offset: 0

Views

Author

Roman Witula, Sep 11 2012

Keywords

Comments

a(n) is equal to the rational part of 2*X(2*n) (with respect to the field Q(sqrt(13))), where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 3 for the argument 2Pi/13 defined by the relation a(n) + A216597(n)*sqrt(13) = 2*X(2*n), where X(n) := s(2)^n + s(5)^n + s(6)^n, where s(j) := 2*sin(2*Pi*j/13).
We note that all numbers of the form a(6*n+k)*13^(-n), where k = 1,...,6, n = 0,1,... are integers, and even the number a(13)*13^(-4) is an integer.
a(n) is also equal to the rational part of 2*Y(2*n) (with respect to the field Q(sqrt(13))), where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. Moreover we can deduce the following decompositions:
2*Y(2*n) = a(n) - A216597(n)*sqrt(13) and Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)) - Roman Witula, Sep 22 2012

Examples

			We have a(7)/2 + 2*A216597(7) = 26, 4*X(4) - X(6) = 13 + sqrt(13), 4*X(8) - X(10) = 91, 4*X(10) - X(12) = 13*(21 - sqrt(13)), 4*X(12) - X(14)= 78*(11 - sqrt(13)), 8*X(14) - 2*X(16) = 11*13*sqrt(13)*(3*sqrt(13) - 5) and X(6) - 10*X(2) = -6*sqrt(13) since 2*X(2) = 13 - sqrt(13), 2*X(4) = 39 - 5*sqrt(13), X(6) = 65 - 11*sqrt(13), 2*X(8) = 91*(5 - sqrt(13)), X(10) = 91*(9 - 2*sqrt(13)), X(12) = 3003 - 715*sqrt(13) = 13*(3*77 - 55*sqrt(13)), X(14) = 11154 - 2782*sqrt(13), 2*X(16) = 83655 - 21541*sqrt(13).
		

References

  • Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {6,13,39,130,455,1638}, 30]

Formula

G.f.: -(91*x^5-364*x^4+468*x^3-260*x^2+65*x-6) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025