A216540 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, 0, -1, -8, -45, -221.
0, 0, -1, -8, -45, -221, -1014, -4472, -19227, -81224, -338767, -1399320, -5736705, -23377770, -94804944, -382930847, -1541565610, -6188513994, -24784429501, -99058333803, -395227906723, -1574536914951, -6264614281978, -24896955293210, -98848880984490
Offset: 1
Examples
We note that: s(2)^3 + s(5)^3 + s(6)^3 = 2*(s(2) + s(5) + s(6)), s(2)^5 + s(5)^5 + s(6)^5 = 5* sqrt((13 + 3*sqrt(13))/2) - sqrt((13 - 3*sqrt(13))/2).
References
- Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
- Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Links
- Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
- Index entries for linear recurrences with constant coefficients, signature (13,-65,156,-182,91,-13).
Programs
-
Mathematica
LinearRecurrence[{13,-65,156,-182,91,-13}, {0,0,-1,-8,-45,-221}, 30]
Formula
G.f.: -x^3*(2*x-1)*(3*x-1)/(13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Sep 23 2012
Extensions
Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025
Comments