A216607 The sequence used to represent partition binary diagram as an array.
0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3
Offset: 1
Links
- Mircea Merca, Binary Diagrams for Storing Ascending Compositions, Comp. J., 2012.
Programs
-
Maple
seq(floor((1/4)*ceil(sqrt(4*n))^2)-n,n=1..50)
-
PARI
A216607(n)=floor((1/4)*ceil(sqrt(4*n))^2)-n;
Formula
a(n) = floor((1/4)*ceiling(sqrt(4*n))^2) - n.
a(n^2) = a(n^2+n) = 0.
From Szymon Lukaszyk, Oct 27 2023: (Start)
a(n) = (-n) mod round(sqrt(n)).
a(n) = (A167268(n) - 2)/4. (End)
Comments