cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216617 G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)^2) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 112, 351, 1130, 3716, 12424, 42101, 144277, 499136, 1740871, 6114629, 21609654, 76786625, 274171192, 983187372, 3539498904, 12787269117, 46345303727, 168463177245, 614002351108, 2243406499930, 8215549186628, 30149687633264, 110861650218443
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

Apparently the number of Dyck paths of semilength n that avoid UUDUUD. The only Dyck path of semilength 4 that contains UUDUUD is UUDUUDdd. So a(4) = A000108(4)-1 = 13. - David Scambler, Apr 24 2013

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 112*x^6 + 351*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x)*A(x) + x)*x + ((1-x)^2*A(x)^2 + 2^2*x*(1-x)*A(x) + x^2)*x^2/2 +
((1-x)^3*A(x)^3 + 3^2*x*(1-x)^2*A(x)^2 + 3^2*x^2*(1-x)*A(x) + x^3)*x^3/3 +
((1-x)^4*A(x)^4 + 4^2*x*(1-x)^3*A(x)^3 + 6^2*x^2*(1-x)^2*A(x)^2 + 4^2*x^3*(1-x)*A(x) + x^4)*x^4/4 +
((1-x)^5*A(x)^5 + 5^2*x*(1-x)^4*A(x)^4 + 10^2*x^2*(1-x)^3*A(x)^3 + 10^2*x^3*(1-x)^2*A(x)^2 + 5^2*x^4*(1-x)*A(x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 106*x^5/5 + 378*x^6/6 + 1359*x^7/7 + 4935*x^8/8 + 18073*x^9/9 + 66578*x^10/10 +...
		

Crossrefs

Programs

  • Maple
    a:= n->coeff(series(RootOf(A=(1+x*(1-x)*A^2)*(1+x^2*A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 25 2013
  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = (1 + x (1 - x) A[x]^2) (1 + x^2 A[x]) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*(1-x)*A^2)*(1+x^2*A) +x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k)*A^(m-k) +x*O(x^n)))));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) * A(x)^(n-k) ).
Recurrence: (n+1)*(n+2)*(679*n^4 - 7380*n^3 + 23045*n^2 - 9120*n - 29484)*a(n) = (n+1)*(1358*n^5 - 14081*n^4 + 33259*n^3 + 60800*n^2 - 249924*n + 117936)*a(n-1) + (7469*n^6 - 81180*n^5 + 247067*n^4 - 13482*n^3 - 719746*n^2 + 667728*n - 176904)*a(n-2) - 2*(5432*n^6 - 67188*n^5 + 260696*n^4 - 210849*n^3 - 724651*n^2 + 1374444*n - 589500)*a(n-3) + 6*(1358*n^6 - 18834*n^5 + 89081*n^4 - 133447*n^3 - 140626*n^2 + 464272*n - 173424)*a(n-4) - 2*(9506*n^6 - 146097*n^5 + 784589*n^4 - 1442697*n^3 - 1099897*n^2 + 5950320*n - 4023900)*a(n-5) + 2*(6790*n^6 - 114540*n^5 + 682867*n^4 - 1465407*n^3 - 769658*n^2 + 6637308*n - 5733000)*a(n-6) + 2*(n-6)*(n-5)*(1358*n^4 - 10007*n^3 + 8773*n^2 + 34598*n - 27540)*a(n-7) - 4*(n-7)*(n-6)*(679*n^4 - 4664*n^3 + 4979*n^2 + 17546*n - 22260)*a(n-8). - Vaclav Kotesovec, Sep 16 2013
a(n) ~ c*d^n/n^(3/2), where d = 3.8781907052914131... is the root of the equation 4 + 4*d - 16*d^2 - 8*d^3 - 12*d^4 + d^6 = 0 and c = 0.561628033... - Vaclav Kotesovec, Sep 16 2013