A216624 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} gcd(c,d) for n>=1, k>=1.
1, 2, 2, 2, 5, 2, 3, 4, 4, 3, 2, 8, 6, 8, 2, 4, 4, 6, 6, 4, 4, 2, 10, 4, 15, 4, 10, 2, 4, 4, 12, 6, 6, 12, 4, 4, 3, 11, 4, 16, 8, 16, 4, 11, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 10, 10, 22, 4, 30, 4, 22, 10, 10, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6
Offset: 1
Examples
[----1---2---3---4---5---6---7---8---9--10--11--12] [ 1] 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6 [ 2] 2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16 [ 3] 2, 4, 6, 6, 4, 12, 4, 8, 10, 8, 4, 18 [ 4] 3, 8, 6, 15, 6, 16, 6, 22, 9, 16, 6, 30 [ 5] 2, 4, 4, 6, 8, 8, 4, 8, 6, 16, 4, 12 [ 6] 4, 10, 12, 16, 8, 30, 8, 22, 20, 20, 8, 48 [ 7] 2, 4, 4, 6, 4, 8, 10, 8, 6, 8, 4, 12 [ 8] 4, 11, 8, 22, 8, 22, 8, 37, 12, 22, 8, 44 [ 9] 3, 6, 10, 9, 6, 20, 6, 12, 23, 12, 6, 30 [10] 4, 10, 8, 16, 16, 20, 8, 22, 12, 40, 8, 32 [11] 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 14, 12 [12] 6, 16, 18, 30, 12, 48, 12, 44, 30, 32, 12, 90 . Displayed as a triangular array: 1, 2, 2, 2, 5, 2, 3, 4, 4, 3, 2, 8, 6, 8, 2, 4, 4, 6, 6, 4, 4, 2, 10, 4, 15, 4, 10, 2, 4, 4, 12, 6, 6, 12, 4, 4, 3, 11, 4, 16, 8, 16, 4, 11, 3,
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- M. Hampejs, N. Holighaus, L. Toth and C. Wiesmeyr, On the subgroups of the group Z_m X Z_n, 2012. - From _N. J. A. Sloane_, Feb 02 2013
Crossrefs
Programs
-
Maple
with(numtheory): T:= (n, k)-> add(add(igcd(c,d), c=divisors(n)), d=divisors(k)): seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Sep 12 2012 T:=proc(m,n) local d; add( d*tau(m*n/d^2), d in divisors(gcd(m,n))); end; # N. J. A. Sloane, Feb 02 2013
-
Mathematica
t[n_, k_] := Sum[Sum[GCD[c, d], {c, Divisors[n]}], {d, Divisors[k]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 21 2013 *)
-
Sage
def A216624(n, k) : cp = cartesian_product([divisors(n), divisors(k)]) return reduce(lambda x,y: x+y, map(gcd, cp)) for n in (1..12): [A216624(n,k) for k in (1..12)]
Comments