cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216624 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} gcd(c,d) for n>=1, k>=1.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 3, 4, 4, 3, 2, 8, 6, 8, 2, 4, 4, 6, 6, 4, 4, 2, 10, 4, 15, 4, 10, 2, 4, 4, 12, 6, 6, 12, 4, 4, 3, 11, 4, 16, 8, 16, 4, 11, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 10, 10, 22, 4, 30, 4, 22, 10, 10, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,k) = number of subgroups of C_n X C_k. [Hampjes et al.] - N. J. A. Sloane, Feb 02 2013

Examples

			[----1---2---3---4---5---6---7---8---9--10--11--12]
[ 1] 1,  2,  2,  3,  2,  4,  2,  4,  3,  4,  2,  6
[ 2] 2,  5,  4,  8,  4, 10,  4, 11,  6, 10,  4, 16
[ 3] 2,  4,  6,  6,  4, 12,  4,  8, 10,  8,  4, 18
[ 4] 3,  8,  6, 15,  6, 16,  6, 22,  9, 16,  6, 30
[ 5] 2,  4,  4,  6,  8,  8,  4,  8,  6, 16,  4, 12
[ 6] 4, 10, 12, 16,  8, 30,  8, 22, 20, 20,  8, 48
[ 7] 2,  4,  4,  6,  4,  8, 10,  8,  6,  8,  4, 12
[ 8] 4, 11,  8, 22,  8, 22,  8, 37, 12, 22,  8, 44
[ 9] 3,  6, 10,  9,  6, 20,  6, 12, 23, 12,  6, 30
[10] 4, 10,  8, 16, 16, 20,  8, 22, 12, 40,  8, 32
[11] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8, 14, 12
[12] 6, 16, 18, 30, 12, 48, 12, 44, 30, 32, 12, 90
.
Displayed as a triangular array:
1,
2,  2,
2,  5,  2,
3,  4,  4,  3,
2,  8,  6,  8, 2,
4,  4,  6,  6, 4,  4,
2, 10,  4, 15, 4, 10, 2,
4,  4, 12,  6, 6, 12, 4,  4,
3, 11,  4, 16, 8, 16, 4, 11, 3,
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(add(igcd(c,d), c=divisors(n)), d=divisors(k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Sep 12 2012
    T:=proc(m,n) local d; add( d*tau(m*n/d^2), d in divisors(gcd(m,n))); end; # N. J. A. Sloane, Feb 02 2013
  • Mathematica
    t[n_, k_] := Sum[Sum[GCD[c, d], {c, Divisors[n]}], {d, Divisors[k]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 21 2013 *)
  • Sage
    def A216624(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(gcd, cp))
    for n in (1..12): [A216624(n,k) for k in (1..12)]

Formula

T(n,n) = A060724(n) = sum_{d|n} d*tau((n/d)^2).
T(n,1) = T(1,n) = A000005(n) = tau(n).
T(n,2) = T(2,n) = A060710(n) = sum_{d|n} (3-[d is odd]) (Iverson bracket).
T(n+1,n) = A092517(n) = tau(n+1)*tau(n).
T(prime(n),1) = A007395(n) = 2.
T(prime(n),prime(n)) = A113935(n) = prime(n)+3.