cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216648 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).

Original entry on oeis.org

2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.

Examples

			856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
12;
52,     56;
212,   216,  232,  240;
852,   856,  872,  880,  920,  936,  944,  976,  992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100,       111000;
11010100,     11011000,     11101000,     11110000;
1101010100,   1101011000,   1101101000,   1101110000,   1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
		

Crossrefs

First column gives: A080675.
Last elements of rows give: A020522.
Row lengths are: A000081.
Subsequence of A057547, A081292.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
          while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n))[] end:
    seq(T(n), n=1..7);

Formula

T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.