A216651 Lengths of decreasing blocks of A006530, the greatest prime factor of n, starting from the second term.
1, 2, 2, 2, 1, 1, 2, 4, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 4, 2, 3, 1, 2, 2, 2, 2, 2, 1, 1, 2, 4, 2, 2, 2, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 1, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 2, 1, 2, 3, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 4, 2, 4, 2, 3, 1, 2, 1
Offset: 1
Keywords
Examples
A006530 with decreasing blocks marked: (2), (3, 2), (5, 3), (7, 2), (3), (5), (11, 3), (13, 7, 5, 2), .... Thus the terms of this sequence are 1, 2, 2, 2, 1, 1, 2, 4, ....
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to use A006530(1..N) L:= map(max @ numtheory:-factorset, [$1..N]): DL:= L[2..-1]-L[1..-2]: R:= select(t -> DL[t]>= 0, [$1..N-1]): R[2..-1]-R[1..-2]; # Robert Israel, Mar 02 2018
Comments