A216665 Triangular array read by rows: T(n,k) is the number of partitions of n into k parts of 2 different sizes; n>=3, 2<=k<=n-1.
1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 3, 2, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 2, 3, 2, 2, 1, 4, 4, 5, 1, 3, 2, 2, 1, 5, 5, 3, 4, 2, 3, 2, 2, 1, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1, 6, 6, 4, 5, 2, 4, 2, 3, 2, 2, 1, 6, 6, 7, 5, 5, 1, 4, 2, 3, 2, 2, 1, 7, 6, 4, 3, 4, 4, 2, 4, 2, 3, 2, 2, 1
Offset: 3
Examples
T(8,3) = 3 because we have: 6+1+1, 4+2+2, 3+3+2. Triangle indexed from n=3 and k=2: 1; 1, 1; 2, 2, 1; 2, 1, 2, 1; 3, 3, 2, 2, 1; 3, 3, 2, 2, 2, 1; 4, 3, 2, 3, 2, 2, 1; 4, 4, 5, 1, 3, 2, 2, 1;
Links
- Alois P. Heinz, Rows n = 3..143, flattened
- N. B. Tani and S. Bouroubi, Enumeration of the Partitions of an Integer into Parts of a Specified Number of Different Sizes and Especially Two Sizes, J. Integer Seqs., Vol. 14 (2011), #11.3.6. (This sequence is Table 1 on p. 10).
Programs
-
Mathematica
nn=15;ss=Sum[Sum[y^2 x^(i+j)/(1-y x^i)/(1-y x^j),{j,1,i-1}],{i,1,nn}]; f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[ss,{x,0,nn}], {x,y}]]//Flatten
Formula
G.f.: Sum_{i>=1} Sum_{j=1..n-1} y^2*x^(i+j)/((1-y*x^j)*(1-y*x^i)).
Comments