A274108 Number of partitions of n into parts with exactly two different sizes, the sizes being relatively prime.
0, 0, 1, 2, 5, 5, 11, 11, 16, 17, 27, 21, 37, 33, 38, 42, 59, 46, 71, 57, 70, 75, 97, 72, 104, 99, 109, 103, 141, 102, 157, 133, 148, 153, 166, 140, 207, 183, 192, 174, 241, 180, 259, 215, 223, 247, 295, 219, 300, 260, 292, 279, 353, 275, 336, 300, 346, 351
Offset: 1
Examples
Explanation of a(3)-a(6): n=3: 21 n=4: 31, 211 n=5: 41, 32, 311, 221, 2111 n=6: 51, 411, 3111, 2211, 21111
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. Benyahia Tani, S. Bouroubi, and O. Kihel, An effective approach for integer partitions using exactly two distinct sizes of parts, Bulletin du Laboratoire 03 (2015), 18-27.
Programs
-
PARI
seq(n)={my(v=Vec(sum(k=1, n-1, numdiv(k)*x^k, O(x^n))^2, -n), u=vector(n, n, moebius(n))); dirmul(u, vector(#v, n, v[n]+numdiv(n)-sigma(n))/2)} \\ Andrew Howroyd, Nov 10 2024
-
Python
from math import gcd from sympy import divisors def A274108(n): return sum(1 for ax in range(1,n-1) for a in divisors(ax,generator=True) for b in divisors(n-ax,generator=True) if aChai Wah Wu, Dec 11 2024
Formula
Moebius transform of A002133. - Andrew Howroyd, Nov 10 2024
Extensions
More terms from Alois P. Heinz, Jun 23 2016
Comments