cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216665 Triangular array read by rows: T(n,k) is the number of partitions of n into k parts of 2 different sizes; n>=3, 2<=k<=n-1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 3, 2, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 2, 3, 2, 2, 1, 4, 4, 5, 1, 3, 2, 2, 1, 5, 5, 3, 4, 2, 3, 2, 2, 1, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1, 6, 6, 4, 5, 2, 4, 2, 3, 2, 2, 1, 6, 6, 7, 5, 5, 1, 4, 2, 3, 2, 2, 1, 7, 6, 4, 3, 4, 4, 2, 4, 2, 3, 2, 2, 1
Offset: 3

Views

Author

Geoffrey Critzer, Sep 13 2012

Keywords

Comments

Row sums = A002133.
First column (corresponding to k=2) = floor( (n-1)/2 ).

Examples

			T(8,3) = 3 because we have: 6+1+1, 4+2+2, 3+3+2.
Triangle indexed from n=3 and k=2:
1;
1, 1;
2, 2, 1;
2, 1, 2, 1;
3, 3, 2, 2, 1;
3, 3, 2, 2, 2, 1;
4, 3, 2, 3, 2, 2, 1;
4, 4, 5, 1, 3, 2, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    nn=15;ss=Sum[Sum[y^2 x^(i+j)/(1-y x^i)/(1-y x^j),{j,1,i-1}],{i,1,nn}]; f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[ss,{x,0,nn}], {x,y}]]//Flatten

Formula

G.f.: Sum_{i>=1} Sum_{j=1..n-1} y^2*x^(i+j)/((1-y*x^j)*(1-y*x^i)).

A274108 Number of partitions of n into parts with exactly two different sizes, the sizes being relatively prime.

Original entry on oeis.org

0, 0, 1, 2, 5, 5, 11, 11, 16, 17, 27, 21, 37, 33, 38, 42, 59, 46, 71, 57, 70, 75, 97, 72, 104, 99, 109, 103, 141, 102, 157, 133, 148, 153, 166, 140, 207, 183, 192, 174, 241, 180, 259, 215, 223, 247, 295, 219, 300, 260, 292, 279, 353, 275, 336, 300, 346, 351
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Examples

			Explanation of a(3)-a(6):
n=3: 21
n=4: 31, 211
n=5: 41, 32, 311, 221, 2111
n=6: 51, 411, 3111, 2211, 21111
		

Crossrefs

Row sums of triangle in A274109.

Programs

  • PARI
    seq(n)={my(v=Vec(sum(k=1, n-1, numdiv(k)*x^k, O(x^n))^2, -n), u=vector(n, n, moebius(n))); dirmul(u, vector(#v, n, v[n]+numdiv(n)-sigma(n))/2)} \\ Andrew Howroyd, Nov 10 2024
    
  • Python
    from math import gcd
    from sympy import divisors
    def A274108(n): return sum(1 for ax in range(1,n-1) for a in divisors(ax,generator=True) for b in divisors(n-ax,generator=True) if aChai Wah Wu, Dec 11 2024

Formula

Moebius transform of A002133. - Andrew Howroyd, Nov 10 2024

Extensions

More terms from Alois P. Heinz, Jun 23 2016
Showing 1-2 of 2 results.