A143339
G.f. satisfies: A(x) = 1 + x*A(x)^2/A(-x).
Original entry on oeis.org
1, 1, 3, 7, 25, 73, 283, 911, 3697, 12561, 52467, 184471, 785929, 2829401, 12229259, 44795167, 195742177, 726541345, 3202144483, 12010174247, 53300753657, 201608659561, 899838791419, 3427434566831, 15370709035601, 58890032580913
Offset: 0
A bisection of g.f. A(x) equals a bisection of A(x)^2:
A(x) = 1 + x + 3*x^2 + 7*x^3 + 25*x^4 + 73*x^5 + 283*x^6 + 911*x^7 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 20*x^3 + 73*x^4 + 238*x^5 + 911*x^6 +...
that is, A(x) - x*A(x)^2 = 1 + x^2*A(x)*A(-x), where
A(x)*A(-x) = 1 + 5*x^2 + 45*x^4 + 521*x^6 + 6873*x^8 + 98061*x^10 +...
Related expressions:
A(x) = 1 + x*A(x)/A(-x) + x^2*A(x)^2/A(-x)^2 + x^3*A(x)^3/A(-x)^3 +...
log(A(x)) = A(x)/A(-x)*x + A(x)^2/A(-x)^2*x^2/2 + A(x)^3/A(-x)^3*x^3/3 +...
Illustrate the behavior of a(n+1)/a(n) as n grows:
a(301)/a(300) = 4.07522764...
a(302)/a(301) = 4.71149410...
a(303)/a(302) = 4.07537802...
a(304)/a(303) = 4.71162882...
the limits of which approach the attractors:
3*(sqrt(3)+1)/2 = 4.09807621... and sqrt(3)+3 = 4.73205080...
note that the product of the attractors equals 1/r^2, where
r = sqrt(2*sqrt(3)-3)/3 = sqrt(2/sqrt(3))/(sqrt(3)+3)
is the radius of convergence of the g.f. A(x).
-
terms = 26; A[] = 1; Do[A[x] = 1 + x*A[x]^2/A[-x] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*A^2/subst(A,x,-x));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,A^m/subst(A^m,x,-x+x*O(x^n))*x^m/m)));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,n,x^m*A^m/subst(A^m,x,-x+x*O(x^n))));polcoeff(A,n)}
A212527
G.f. satisfies: A(x) = 1 + x*A(x)^2 / (A(I*x) * A(-I*x)).
Original entry on oeis.org
1, 1, 2, 8, 26, 56, 194, 832, 2866, 7904, 30690, 137000, 497706, 1491512, 6041602, 27557184, 102985186, 321675648, 1333006018, 6160815624, 23426000186, 75016874488, 315357132994, 1470462300160, 5656904907026, 18419315779552, 78201118018466, 366962271138472
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 56*x^5 + 194*x^6 + 832*x^7 +...
Related expansions begin:
A(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 72*x^4 + 196*x^5 + 668*x^6 + 2692*x^7 +...
A(I*x)*A(-I*x) = 1 - 3*x^2 + 40*x^4 - 316*x^6 + 4624*x^8 - 50676*x^10 + 811192*x^12 -+...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A^2/(subst(A,x,I*x+x*O(x^n))*subst(A,x,-I*x+x*O(x^n))));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A216713
G.f.: A(x) = 1 + x*A(x)^2 / ( A(w*x)*A(w^2*x) ), where w = exp(2*Pi*I/3).
Original entry on oeis.org
1, 1, 3, 12, 27, 105, 420, 1242, 5295, 22395, 72738, 323268, 1410684, 4806675, 21881721, 97371786, 341608239, 1579726122, 7123796790, 25489388367, 119184247992, 542664427242, 1969440159591, 9284827569117, 42584603672868, 156213604844883, 741154831030785
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 27*x^4 + 105*x^5 + 420*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 87*x^4 + 336*x^5 + 1356*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 189*x^4 + 756*x^5 + 3132*x^6 +...
Let w = exp(2*Pi*I/3), then A(x) = 1 + x*A(x)^3/(A(x)*A(w*x)*A(w^2*x)) where
A(x)*A(w*x)*A(w^2*x) = 1 + 28*x^3 + 1134*x^6 + 61857*x^9 + 3929121*x^12 + 272388420*x^15 + 19981576476*x^18 + 1524888581787*x^21 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n+1,A=1+x*A^3*exp(-3*sum(m=1,n\3,x^(3*m)*polcoeff(log(A),3*m))+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A216712
G.f.: A(x) = 1 + x*A(x)^3 / ( A(-x)*A(I*x)*A(-I*x) ), where I^2 = -1.
Original entry on oeis.org
1, 1, 4, 22, 140, 514, 3444, 23790, 165932, 774610, 5767268, 42526198, 310791884, 1574532626, 12230311188, 92980917006, 696528653740, 3677761305954, 29231321098692, 226211978983190, 1720430261953036, 9313977313216354, 75106192841523892, 588010633850768622
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 514*x^5 + 3444*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 1484*x^5 + 9520*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 3024*x^5 + 19240*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 5264*x^5 + 33800*x^6 +...
A(x)*A(-x) = 1 + 7*x^2 + 252*x^4 + 6496*x^6 + 308820*x^8 + 10966136*x^10 + 582452652*x^12 + 23322250960*x^14 + 1309365750212*x^16 +...
Note that A(x) = 1 + x*A(x)^4/(A(x)*A(-x)*A(I*x)*A(-I*x)) where
A(x)*A(-x)*A(I*x)*A(-I*x) = 1 + 455*x^4 + 590200*x^8 + 1124826664*x^12 + 2538673877080*x^16 + 6294363022919816*x^20 + 16568529053651321656*x^24 +...
Note also that a bisection of 1/A(x)^3 equals a bisection of 1/A(x)^4:
1/A(x)^3 = 1 - 3*x - 6*x^2 - 28*x^3 - 165*x^4 + 273*x^5 - 2292*x^6 +...
1/A(x)^4 = 1 - 4*x - 6*x^2 - 28*x^3 - 165*x^4 + 728*x^5 - 2292*x^6 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n,A=1+x*A^3/(subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x)));polcoeff(A, n)}
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n+1,A=1+x*A^4*exp(-4*sum(m=1,n\4,x^(4*m)*polcoeff(log(A),4*m))+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A216683
G.f. satisfies: A(x) = 1 + x*A(x) / ( A(I*x)*A(-I*x) ).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 2, 0, -5, -2, -2, 8, 38, 20, 20, -48, -269, -138, -138, 392, 2194, 1132, 1132, -3344, -19010, -9812, -9812, 30032, 172332, 89000, 89000, -279136, -1613629, -833626, -833626, 2663432, 15485978, 8002172, 8002172, -25938768, -151520246, -78309372, -78309372
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6 - 5*x^8 - 2*x^9 +...
Related expansions:
1/A(x) = 1 - x - x^3 + 2*x^5 + 3*x^7 - 10*x^9 - 18*x^11 + 68*x^13 + 131*x^15 - 530*x^17 - 1062*x^19 +...+ -A143045(n)*x^(2*n-1) +...
A(I*x)*A(-I*x) = 1 - x^2 + 3*x^4 - 2*x^6 - 5*x^8 + 2*x^10 + 38*x^12 - 20*x^14 - 269*x^16 + 138*x^18 + 2194*x^20 +...
The 4-sections of g.f. A(x) begin:
A0(x) = 1 + 3*x - 5*x^2 + 38*x^3 - 269*x^4 + 2194*x^5 - 19010*x^6 + 172332*x^7 +...
A1(x) = A2(x) = 1 + 2*x - 2*x^2 + 20*x^3 - 138*x^4 + 1132*x^5 - 9812*x^6 + 89000*x^7 +...
A3(x) = 2 + 8*x^2 - 48*x^3 + 392*x^4 - 3344*x^5 + 30032*x^6 - 279136*x^7 + 2663432*x^8 +...
where
A1(x) + x*A3(x)/(2*A0(x)) = 1 + 3*x - 5*x^2 + 38*x^3 - 269*x^4 + 2194*x^5 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x*A/(subst(A, x, I*x+x*O(x^n))*subst(A, x, -I*x+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments