cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216724 Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
        1
        1
        2
        3      3
       24      0
      100     15     0    5
      594    108    18    0
     4389    504   119   21   0   7
    35744   3520   960   64  32   0
   325395  31077  5238  927 207  27  0 9
  3288600 288300 42050 8800 900 100 50 0
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.

Crossrefs

Column 1 is A174073.
Row sums are A000142.

Programs

  • Maple
    b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
         `if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
            b(s minus {j}, y, j, n), j=s)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
             iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)):
    seq(T(n), n=0..11);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
         If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
         b[s~Complement~{j}, y, j, n], {j, s}]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
         Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
    Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 13 2021