A216755 Digital root of the fifth power of Fibonacci(n).
1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1).
Programs
-
Mathematica
(* First run program for A211821 to define digitalRoot *) Table[digitalRoot[Fibonacci[n]^5], {n, 90}] (* Alonso del Arte, Sep 15 2012 *) LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1},{1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9},100] (* Ray Chandler, Aug 27 2015 *)
Formula
a(n) = a(n-4) - a(n-12) + a(n-16). - R. J. Mathar, Sep 15 2012
G.f. x*( -1-x-5*x^2-9*x^3-x^4-7*x^5-2*x^6-2*x^8+7*x^9-x^10-5*x^12-8*x^13-x^14-9*x^15 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4+1) *(x^8-x^4+1) ). - R. J. Mathar, Sep 15 2012
Comments