cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216755 Digital root of the fifth power of Fibonacci(n).

Original entry on oeis.org

1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9
Offset: 1

Views

Author

Ravi Bhandari, Sep 15 2012

Keywords

Comments

This sequence is periodic with period 24, i.e. gcd(period of digital roots of squares of Fibonacci, period of digital roots of cubes of Fibonacci)

Crossrefs

Programs

  • Mathematica
    (* First run program for A211821 to define digitalRoot *) Table[digitalRoot[Fibonacci[n]^5], {n, 90}] (* Alonso del Arte, Sep 15 2012 *)
    LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1},{1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9},100] (* Ray Chandler, Aug 27 2015 *)

Formula

a(n) = A010888(A056572(n)).
a(n) = a(n-4) - a(n-12) + a(n-16). - R. J. Mathar, Sep 15 2012
G.f. x*( -1-x-5*x^2-9*x^3-x^4-7*x^5-2*x^6-2*x^8+7*x^9-x^10-5*x^12-8*x^13-x^14-9*x^15 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4+1) *(x^8-x^4+1) ). - R. J. Mathar, Sep 15 2012